Log in

A new method of nonlinear analysis for a mechanism with a cylindrical clearance joint using information entropy theory

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many studies have found that the local contact deformation of joints with clearance has obvious nonlinear characteristics and even exhibits chaotic response under certain conditions. In this paper, the information entropy theory that can reflect the uncertainty of system state is applied to quantitatively analyze the nonlinear behavior of a mechanism with a cylindrical clearance joint. A model of a cylindrical joint with radial and axial clearances is developed to reflect complex contact-impact phenomena. This model presents a comprehensive description of contact modes. To demonstrate the application of the information entropy theory and investigate the nonlinear behavior, this model is used in numerical calculation and simulation. The entropy and entropy interval are used as the benchmark for quantitative analysis of nonlinear behavior. The results of the simulation are then analyzed quantitatively. In addition, an experimental setup is designed to reveal the nonlinear behavior between the journal and the bearing. Based on the entropy theory, the results of theoretical and experimental quantitative analysis of nonlinear behaviors under the differences of clearance and velocity are consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author [Shaoze Yan], upon reasonable request.

References

  1. Bu, W., Liu, Z., Tan, J.: Detachment avoidance of joint elements of a robotic manipulator with clearances based on trajectory planning. Mech. Mach. Theory. 45(6), 925–940 (2010). https://doi.org/10.1016/j.mechmachtheory.2010.01.006

    Article  MATH  Google Scholar 

  2. Yu, L.X., Liu, C.S.: Dynamic simulation and kinetic description of revolute joint with spatial clearance. Acta Sci. Nat. Univ. Pekin. 41(5), 679–687 (2005). https://doi.org/10.3321/j.issn:0479-8023.2005.05.004

    Article  Google Scholar 

  3. Ambrósio, J., Veríssimo, P.: Improved bushing models for general multibody systems and vehicle dynamics. Multibody Syst. Dyn. 22, 341–365 (2009). https://doi.org/10.1007/s11044-009-9161-7

    Article  MATH  Google Scholar 

  4. Mukras, S., Kim, N.H., Mauntler, N.A.: Analysis of planar multibody systems with revolute joint wear. Wear 268(5–6), 643–652 (2010). https://doi.org/10.1016/j.wear.2009.10.014

    Article  Google Scholar 

  5. Machado, M., Flores, P., Claro, J.C.P., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.M.: Development of a planar multi-body model of the human knee joint. Nonlinear Dyn. 60(3), 459–478 (2010). https://doi.org/10.1007/s11071-009-9608-7

    Article  MATH  Google Scholar 

  6. Bing, S., Ye, J.: Dynamic analysis of the reheat-stop-valve mechanism with revolute clearance joint in consideration of thermal effect. Mech. Mach. Theory. 43(12), 1625–1638 (2008). https://doi.org/10.1016/j.mechmachtheory.2007.12.004

    Article  MATH  Google Scholar 

  7. Erkaya, S., Uzmay, I.: Investigation on effect of joint clearance on dynamics of four-bar mechanism. Nonlinear Dyn. 58(1–2), 179–198 (2009). https://doi.org/10.1007/s11071-009-9470-7

    Article  MATH  Google Scholar 

  8. Yoshida, K., Mavroidis, C., Dubowsky, S.: Impact dynamics of space manipulators mounted on a flexible structure. Dyn. Control Struct. Space III (2013). https://doi.org/10.2495/DCSS960081

    Article  Google Scholar 

  9. Tian, Q., Lou, J., Mikkola, A.: A new elastohydrodynamic lubricated spherical joint model for rigid-flexible multibody dynamics. Mech. Mach. Theory. 107, 210–228 (2017). https://doi.org/10.1016/j.mechmachtheory.2016.09.006

    Article  Google Scholar 

  10. Reis, V.L., Daniel, G.B., Cavalca, K.L.: Dynamic analysis of a lubricated planar slider-crank mechanism considering friction and Hertz contact effects. Mech. Mach. Theory 74, 257–273 (2014). https://doi.org/10.1016/j.mechmachtheory.2013.11.009

    Article  Google Scholar 

  11. Daniel, G.B., Machado, T.H., Cavalca, K.L.: Investigation on the influence of the cavitation boundaries on the dynamic behavior of planar mechanical systems with hydrodynamic bearings. Mech. Mach. Theory 99, 19–36 (2016). https://doi.org/10.1016/j.mechmachtheory.2015.11.019

    Article  Google Scholar 

  12. **ang, W.W.K., Yan, S.Z., Wu, J.N.: Dynamic response and sensitivity analysis for mechanical systems with clearance joints and parameter uncertainties using Chebyshev polynomials method. Mech. Syst. Signal PR (2020). https://doi.org/10.1016/j.ymssp.2020.106596

    Article  Google Scholar 

  13. Li, J.L., Huang, H., Yan, S.Z.: Kinematic accuracy and dynamic performance of a simple planar space deployable mechanism with joint clearance considering parameter uncertainty. Acta Astronaut. 136, 34–45 (2017). https://doi.org/10.1016/j.actaastro.2017.02.027

    Article  Google Scholar 

  14. Wu, J.N., Yan, S.Z., **e, L.Y.: Reliability analysis method of a solar array by using fault tree analysis and fuzzy reasoning Petri net. Acta Astronaut. 69, 960–968 (2011). https://doi.org/10.1016/j.actaastro.2011.07.012

    Article  Google Scholar 

  15. Yan, S.Z., **ang, W.W.K., Zhang, L.: A comprehensive model for 3D revolute joints with clearances in mechanical systems. Nonlinear Dyn. 80(1–2), 309–328 (2015). https://doi.org/10.1007/s11071-014-1870-7

    Article  Google Scholar 

  16. Li, J.L., Yan, S.Z., Guo, F.: Effects of dam**, friction, gravity, and flexibility on the dynamic performance of a deployable mechanism with clearance. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 227(8), 1791–1803 (2013). https://doi.org/10.1177/0954406212469563

    Article  Google Scholar 

  17. Dietl, P., Wensing, J., Nijen, G.: Rolling bearing dam** for dynamic analysis of multi-body systems-experimental and theoretical results. Proc. Inst. Mech. Eng. K J. Multibody Dyn. 214(1), 33–43 (2000). https://doi.org/10.1243/1464419001544124

    Article  Google Scholar 

  18. Liu, C.S., Zhang, K., Yang, R.: The FEM analysis and approximate model for cylindrical joints with clearances. Mech. Mach. Theory 42(2), 183–197 (2007). https://doi.org/10.1016/j.mechmachtheory.2006.02.006

    Article  MATH  Google Scholar 

  19. Erkaya, S., Doğan, S., Şefkatlioğlu, E.: Analysis of the joint clearance effects on a compliant spatial mechanism. Mech. Mach. Theory 104, 255–273 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.06.009

    Article  Google Scholar 

  20. Qian, M.B., Qin, Z., Yan, S.Z., Zhang, L.: A comprehensive method for the contact detection of a translational clearance joint and dynamic response after its application in a crank-slider mechanism. Mech. Mach. Theory. 145, 103717 (2020). https://doi.org/10.1016/j.mechmachtheory.2019.103717

    Article  Google Scholar 

  21. **ang, W.W.K., Yan, S.Z., Wu, J.N.: Dynamic analysis of planar mechanical systems considering stick-slip and Stribeck effect in revolute clearance joints. Nonlinear. Dyn. 95(1), 321–341 (2019). https://doi.org/10.1007/s11071-018-4566-6

    Article  Google Scholar 

  22. Qian, M.B., Song, P., Qin, Z., Yan, S.Z., Zhang, L.: Mechanically robust and abrasion-resistant polymer nanocomposites for potential applications as advanced clearance joints. Compos. Part A Appl. Sci. Manuf. 126, 105607 (2019). https://doi.org/10.1016/j.compositesa.2019.105607

    Article  Google Scholar 

  23. Earles, S., Wu, C.: Motion analysis of a rigid link mechanism with clearance at a bearing using Lagrangian mechanics and digital computation. Mechanisms 1, 83–89 (1973)

    Google Scholar 

  24. Seneviratne, L.D., Earles, S.W.E.: Chaotic behavior exhibited during contact loss in a clearance joint of a four-bar mechanism. Mech. Mach. Theory 27(3), 307–321 (1992). https://doi.org/10.1016/0094-114X(92)90021-9

    Article  Google Scholar 

  25. Kuntman, A., Ardalı, A., Kuntman, H.: A weibull distribution-based new approach to represent hot carrier degradation in threshold voltage of MOS transistors. Solid State Electron. 48(2), 217–223 (2004). https://doi.org/10.1016/j.sse.2003.07.001

    Article  Google Scholar 

  26. Han,Z.J., Lambadaris,I.: Design-survivable WDM networks using a path protection algorithm. In: Proceedings of SPIE, (2002). Doi: https://doi.org/10.1117/12.482438

  27. Townsend, M.A., Mansour, W.M.: A pendulating model for mechanisms with clearances in the revolutes. J. Eng. Ind. 97(2), 354–358 (1975). https://doi.org/10.1115/1.3438563

    Article  Google Scholar 

  28. Dubowsky, S., Gardner, T.N.: Design and analysis of multilink flexible mechanism with multiple clearance connections. J. Eng. Ind. 99(1), 88–96 (1977). https://doi.org/10.1115/1.3439171

    Article  Google Scholar 

  29. Dubowsky, S.: On predicting the dynamic effects of clearances in planar mechanisms. J. Eng. Ind. 96(1), 317–323 (1974). https://doi.org/10.1115/1.3438320

    Article  Google Scholar 

  30. Miedema, B., Mansour, W.M.: Mechanical joints with clearance: a three-mode model. J. Eng. Ind. 98(4), 1319–1323 (1976). https://doi.org/10.1115/1.3439107

    Article  Google Scholar 

  31. Soong, K., Thompson, B.S.: A theoretical and experimental investigation of the dynamic response of a slider-crank mechanism with radial clearance in the gudgeon-pin joint. J. Mech. Eng. Sci. 112(2), 183–189 (1990). https://doi.org/10.1115/1.2912591

    Article  Google Scholar 

  32. Flores, P., Ambrosio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17–19), 1359–1369 (2004). https://doi.org/10.1016/j.compstruc.2004.03.031

    Article  Google Scholar 

  33. Brutti, C., Coglitore, G., Valentini, P.P.: Modeling 3D revolute joint with clearance and contact stiffness. Nonlinear Dyn. 66, 531–548 (2011). https://doi.org/10.13433/j.cnki.1003-8728.2000.05.004

    Article  Google Scholar 

  34. Jia, X.H., Ji, L.H., **, D.W.: Dynamic analysis of the crank-slider mechanism including tripod-ball sliding joint with clearance. J. Mech. Sci. Technol. 19(5), 698–700 (2000). https://doi.org/10.13245/j.hust.2006.11.029

    Article  Google Scholar 

  35. Bauchau, O.A., Joo, T.: Computational schemes for nonlinear elasto-dynamics. Int. J. Numer. Meth. Eng. 45(6), 693–719 (2015). https://doi.org/10.1002/(SICI)1097-0207

    Article  MATH  Google Scholar 

  36. Horie, M., Funabashi, H., Ogawa, K.: A displacement analysis of spatial four-bar mechanisms with clearances and tolerances. Bull. JSME 28(241), 1535–1542 (2008). https://doi.org/10.1299/jsme1958.28.1535

    Article  Google Scholar 

  37. Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37(9), 895–913 (2002). https://doi.org/10.1016/S0094-114X(02)00033-2

    Article  MATH  Google Scholar 

  38. Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 61(4), 633–653 (2010). https://doi.org/10.1007/s11071-010-9676-8

    Article  MATH  Google Scholar 

  39. Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multi-body mechanical systems with lubricated joints. Multibody Syst. Dyn. 12(1), 47–74 (2004). https://doi.org/10.1023/B:MUBO.0000042901.74498.3a

    Article  MATH  Google Scholar 

  40. Varedi, S.M., Daniali, H.M., Dardel, M.: Dynamic synthesis of a planar slider–crank mechanism with clearances. Nonlinear Dyn. 79(2), 1587–1600 (2015). https://doi.org/10.1007/s11071-014-1762-x

    Article  Google Scholar 

  41. Qian, M.B., Xu, X.D., Qin, Z., Yan, S.Z.: Silicon carbide whiskers enhance mechanical and anti-wear properties of PA6 towards potential applications in aerospace and automobile fields. Compos. B. Eng. 175, 107096 (2019). https://doi.org/10.1016/j.compositesb.2019.107096

    Article  Google Scholar 

  42. Morris, B., Grizzle, J.W.: A restricted poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: application to bipedal robots. In: IEEE Conference on Decision and Control. (2005). https://ieeexplore.ieee.org/document/1582821

  43. Arqub, O.A., Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel hilbert space method. Soft. Comput. 20(8), 3283–3302 (2016). https://doi.org/10.1007/s00500-015-1707-4

    Article  MATH  Google Scholar 

  44. Djennadi, S., Shawagfeh, N., Abu Arqub, O.: A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations. Chaos Solitons Fractals (2021). https://doi.org/10.1016/j.chaos.2021.111127

    Article  MathSciNet  Google Scholar 

  45. Yang, C., Wu, Q.: On stability analysis via Lyapunov exponents calculated from a time series using nonlinear map**-a case study. Nonlinear Dyn. 59(1–2), 239 (2010). https://doi.org/10.1007/s11071-009-9535-7

    Article  MathSciNet  MATH  Google Scholar 

  46. Rajabalinejad, M., Meester, L.E., van Gelder, P.H.A.J.M., Vrijling, J.K.: Dynamic bounds coupled with Monte Carlo simulations. Reliab. Eng. Syst. Safe 96(2), 278–285 (2011). https://doi.org/10.1016/j.compositesb.2019.107096

    Article  Google Scholar 

  47. Zhang, D.: Coarse graining method in Lempel-Ziv complexity arithmetic. Chin. J. Comput. Phys. 25(04), 125–130 (2008). https://doi.org/10.1142/S0217595908001626

    Article  Google Scholar 

  48. Geng, J., Wei, K., Li, M.: Research on equipment support capability evaluation based on information fusion. J. Phys. Conf. Ser. 1288, 012080 (2019). https://doi.org/10.1088/1742-6596/1288/1/012080

    Article  Google Scholar 

  49. **e, P., Wang, Y.F., Jiang, G.Q., et al.: Incipient fault detection of generators in wind turbines based on sample entropy. Acta Metro Sin 38(5), 626–630 (2017). https://doi.org/10.3969/j.issn.1000-1158.2017.05.23

    Article  Google Scholar 

  50. Chen, Z., Yeo, C.K., Lee, B.S., Lau, C.T.: Power spectrum entropy based detection and mitigation of low-rate dos attacks. Comput. Netw. 136(MAY8), 80–94 (2018). https://doi.org/10.1016/j.comnet.2018.02.029

    Article  Google Scholar 

  51. Zhang, X., Yan, Q., Yang, J., Zhao, J.F., Shen, Y.B.: An assembly tightness detection method for bolt-jointed rotor with wavelet energy entropy. Measurement 136, 212–224 (2019). https://doi.org/10.1016/j.measurement.2018.12.056

    Article  Google Scholar 

  52. Ye, G.Y., Xu, K.J., Wu, W.K.: Standard deviation based acoustic emission signal analysis for detecting valve internal leakage. Sens. Actuators A Phys. (2018). https://doi.org/10.1016/j.sna.2018.09.048

    Article  Google Scholar 

  53. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multi-body systems. Mech. Mach. Theory. 44(6), 1211–1222 (2009). https://doi.org/10.1016/j.mechmachtheory.2008.08.003

    Article  MATH  Google Scholar 

  54. Flores, P., Ambrósio, J., Claro, J.: Dynamic behavior of planar rigid multi-body systems including revolute joints with clearance. J. Multi-body Dyn. 221(K2), 161–174 (2007). https://doi.org/10.1243/14644193JMBD96

    Article  Google Scholar 

  55. Yan, S.Z., **ang, W.W.K., Zhang, L.: A comprehensive model for 3D revolute joints with clearances in mechanical systems. Nonlinear Dyn. 80(1–2), 309–328 (2015). https://doi.org/10.1007/s11071-014-1870-7

    Article  Google Scholar 

  56. Flores, P., Ambrósio, J., Claro, J.C.P.: A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech. Mach. Theory 41(3), 247–261 (2006). https://doi.org/10.1016/j.mechmachtheory.2005.10.002

    Article  MATH  Google Scholar 

  57. Tian, Q., Liu, C., Machado, M.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multi-body systems. Nonlinear Dyn. 64(1), 25–47 (2011). https://doi.org/10.1007/s11071-010-9843-y

    Article  MATH  Google Scholar 

  58. Luka, S., Janko, S., Miha, B.: A review of continuous contact-force models in multibody dynamics. IJMS 145, 171–187 (2018). https://doi.org/10.1016/j.ijmecsci.2018.07.010

    Article  Google Scholar 

  59. Tian, Q., Zhang, Y.Q., Chen, L.P.: Simulation of planar flexible multi-body systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010). https://doi.org/10.1007/s11071-009-9610-0

    Article  MATH  Google Scholar 

  60. **ang, W.W.K., Yan, S.Z.: Dynamic analysis of space robot manipulator considering clearance joint and parameter uncertainty: modeling, analysis and quantification. Acta Astronaut. 169, 158–169 (2020). https://doi.org/10.1016/j.actaastro.2020.01.011

    Article  Google Scholar 

  61. Goldsmith, W., Frasier, J.T.: Impact: the theory and physical behavior of colliding solids. Appl. Mech. 28(4), 639 (1961). https://doi.org/10.1115/1.3641808

    Article  Google Scholar 

  62. Huang, J.F., Yu, T., Chen, J.Y.: Comparison and analysis of hertz contact force models for collision of rigid bodies. Mach. Des. Manuf. 08, 36–38 (2017). https://doi.org/10.19356/j.cnki.1001-3997.2017.08.008

    Article  Google Scholar 

  63. Yan, S.Z., Guo, P.: Kinematic accuracy analysis of flexible mechanisms with uncertain link lengths and joint clearances. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225(8), 1973–1983 (2011). https://doi.org/10.1177/0954406211401499

    Article  Google Scholar 

  64. Sapietova, A., Bukovan, J., Sapieta, M., Jakubovicova, L.: Analysis and implementation of input load effects on an air compressor piston in MSC. ADAMS Proc. Eng. 177, 554–561 (2017). https://doi.org/10.1016/j.proeng.2017.02.260

    Article  Google Scholar 

  65. Aghababa, M.P., Aghababa, H.P.: Robust synchronization of a chaotic mechanical system with nonlinearities in control inputs. Nonlinear Dyn. 73(1–2), 363–376 (2013). https://doi.org/10.1007/s11071-013-0792-0

    Article  MathSciNet  MATH  Google Scholar 

  66. Arqub, O.A., Al-Smadi, M.: Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions. Soft Comput. 24(16), 12501–12522 (2020). https://doi.org/10.1007/s00500-020-04687-0

    Article  Google Scholar 

  67. Arqub, O.A., Abo-Hammour, Z.: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf. Sci. 279, 396–415 (2014). https://doi.org/10.1016/j.ins.2014.03.128

    Article  MathSciNet  MATH  Google Scholar 

  68. Flores, P., Ambrósio, J.: Revolute joints with clearance in multi-body systems. Comput. Struct. 82(17), 1359–1369 (2004). https://doi.org/10.1016/j.compstruc.2004.03.031

    Article  Google Scholar 

  69. Kozicki, J., Donze, F.V.: A new open-source software developed for numerical simulations using discrete modeling methods. Comput. Methods Appl. Mech. Eng. 197(49–50), 4429–4443 (2008). https://doi.org/10.1016/j.cma.2008.05.023

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers whose comments and suggestions have helped to improve this paper. This work is supported by the National Science Foundation of China under Contract Nos. 51875531 and 11872033 and The Natural Science Foundation of Bei**g under Contract No. 3132017.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoze Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, M., Yan, S., Zhang, L. et al. A new method of nonlinear analysis for a mechanism with a cylindrical clearance joint using information entropy theory. Nonlinear Dyn 108, 3903–3926 (2022). https://doi.org/10.1007/s11071-022-07402-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07402-w

Keywords

Navigation