Log in

Transient dynamics in electronic neuron-like circuits in application to modeling epileptic seizures

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In complex systems like neural circuits, transient dynamics can stay of a large interest, being a promising explanation of the observed biological phenomena. In particular, spike-wave discharges (SWDs, the main encephalographic manifestation of absence seizures) were recently considered as possible long transient processes, since signal analysis showed no special mechanism of their termination while a number of initiation mechanisms were described in the literature. Here, we construct the ensemble of eight mesoscale models (electronic circuits) different by connectivity matrix and show that they indeed demonstrate long quasiregular transient dynamics in a reasonable area of parameters. All models from the ensemble were networks consisting of 14 electronic FitzHugh–Nagumo neuron oscillators connected based on anatomical laws for thalamocortical system. Most of networks were able to demonstrate epiletiform-like activity of reasonable duration in response to short in time external driving which is one of known mechanisms for absence epilepsy. The distribution of model SWDs by length was comparable with what is known for animal models. The proposed models are of fundamental interest being first known electronic model of absence seizures. They can be also used for testing and validating approaches for directed connectivity analysis which are very essential in brain study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Coenen, A.M.L., van Luijtelaar, E.L.J.M.: Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet 33(6), 635–655 (2003). https://doi.org/10.1023/A:1026179013847

    Article  Google Scholar 

  2. Marescaux, C., Vergnes, M., Depaulis, A.: Genetic absence epilepsy in rats from Strasbourg - a review. J Neur Transm Supplement (1992). https://doi.org/10.1007/978-3-7091-9206-1_4

    Article  Google Scholar 

  3. Crunelli, V., Lorincz, M.L., McCafferty, C., Lambert, R.C., Leresche, N., Di Giovanni, G., David, F.: Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain 143(8), 2341–2368 (2020). https://doi.org/10.1093/brain/awaa072

    Article  Google Scholar 

  4. Crunelli, J., Leresche, N.: Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev. Neurosci. 3, 371–382 (2002). https://doi.org/10.1038/nrn811

    Article  Google Scholar 

  5. Destexhe, A.: Network models of absence seizures in “Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics”, Academic Press. (2014):11–35, https://doi.org/10.1016/B978-0-12-415804-7.00002-2

  6. Thomas, A.: Memristor-based neural networks. J Phys D Appl Phys (2013). https://doi.org/10.1088/0022-3727/46/9/093001

    Article  Google Scholar 

  7. Babacan, Y., Kaçar, F., Gürkan, K.: A spiking and bursting neuron circuit based on memristor. Neurocomputing (2016). https://doi.org/10.1016/j.neucom.2016.03.060

    Article  Google Scholar 

  8. Kulminskiy, D.D., Ponomarenko, V.I., Prokhorov, M.D., Hramov, A.E.: Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators. Nonlin Dyn 98(1), 735–748 (2019). https://doi.org/10.1007/s11071-019-05224-x

    Article  Google Scholar 

  9. Medvedeva, T.M., Sysoeva, M.V., Lüttjohann, A., van Luijtelaar, G., Sysoev, I.V.: Dynamical mesoscale model of absence seizures in genetic models. PLoS One (2020). https://doi.org/10.1371/journal.pone.0239125

    Article  Google Scholar 

  10. Abbasova, K.R., Chepurnov, S.A., Chepurnova, N.E., van Luijtelaar, G.: The role of perioral afferentation in the occurrence of spike-wave discharges in the WAG/Rij model of absence epilepsy. Brain Res 1366, 257–262 (2010). https://doi.org/10.1016/j.brainres.2010.10.007

    Article  Google Scholar 

  11. Kapustnikov, A.A., Sysoeva, M.V., Sysoev, I.V.: The modeling of spike-wave discharges in brain with small oscillatory neural networks. Math Bio Bioinfo 15(2), 138–147, (2020). https://doi.org/10.17537/2020.15.138

  12. Rabinovich, M.I., Trubetskov, D.I.: Oscillat wave. In: Linear and nonlinear systems, p. 577. Kluwer Academic Publishers, Dordrecht (1989)

    Book  Google Scholar 

  13. Gonchenko, A.S., Gonchenko, S.V., Kazakov, A.O., Kozlov, A., Bakhanova, Y.V. (2019) Mathematical theory of dynamical chaos and its applications: Review Part 2 Spiral chaos of three-dimensional flows Izvestiya VUZ. Appl Nonlin Dyn. https://doi.org/10.18500/0869-6632-2019-27-5-7-52

  14. Egorov, N.M., Ponomarenko, V.I., Sysoev, I.V., Sysoeva, M.V.: Simulation of epileptiform activity using network of neuron-like radio technical oscillators. Techn Phys 66(3), 505–514 (2021). https://doi.org/10.1134/S1063784221030063

    Article  Google Scholar 

  15. Kalimullina, L.B., Musina, A.M., Kuznetsova, G.N.: Experimental approaches to studies of the role of the genotype at the TAG 1A locus of the dopamine D2 receptor in epileptogenesis. Neurosci Behavi Physiol 43(8), 935–940 (2013). https://doi.org/10.1007/s11055-013-9831-z

    Article  Google Scholar 

  16. Grishchenko, A.A., van Rijn, K.M., Sysoev, I.V.: Comparative analysis of methods for estimation of undirected coupling from time series of intracranial EEGs of cortex of rats-genetic models of absence epilepsy. Math Bio Bioinfor 12(2), 317–326, (2017). https://doi.org/10.17537/2017.12.317

  17. Egorov, N.M., Ponomarenko, V.I., Melnikova, S.N., Sysoev, I.V., Sysoeva, M.V.: Common mechanisms of attractorless oscillatory regimes in radioengineering models of brain thalamocortical network. Izvestiya VUZ. Appl Nonlin Dyn 29(6), 927–942, (2021). https://doi.org/10.18500/0869-6632-2021-29-6-927-942

  18. Egorov, NM., Ponomarenko, VI., Sysoev, IV., Sysoeva, MV.: Epileptiform activity generation by an ensemble of simplified electronic FitzHugh–Nagumo oscillators connected by a linear couplings. Proceedings of 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA), (2021): 65–68, https://doi.org/10.1109/DCNA53427.2021.9586902

  19. Dahlem, M.A., Hiller, G., Panchuk, A., Schöll, E.: Dynamics of delay-coupled excitable neural systems. Int J Bifurcat Chaos 19(2), 745–753 (2009). https://doi.org/10.1142/S0218127409023111

    Article  MathSciNet  MATH  Google Scholar 

  20. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1, 445–466 (1961). https://doi.org/10.1016/S0006-3495(61)86902-6

    Article  Google Scholar 

  21. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proceedings of the IRE 50, 2061–2070 (1962). https://doi.org/10.1109/JRPROC.1962.288235

    Article  Google Scholar 

  22. Binczak, S., Jacquir, S., Bilbault, J.-M., Kazantsev, V.B., Nekorkin, V.I.: Experimental study of electrical FitzHugh-Nagumo neurons with modified excitability. Neur Netwo 19(5), 684–693 (2006). https://doi.org/10.1016/j.neunet.2005.07.011

    Article  MATH  Google Scholar 

  23. Dmitrichev, A.S., Kasatkin, D.V., Klinshov, V.V., Kirillov, S.Y., Maslennikov, O.V., Shchapin, D.S., Nekorkin, V.I.: Nonlinear dynamical models of neurons: review. Izvestiya VUZ. Appl Nonlin Dyn 26(4), 5–58, (2018). https://doi.org/10.18500/0869-6632-2018-26-4-5-58

  24. Suffczynski, P., Kalitzin, S., Lopes Da Silva, F.H.: Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience. 126(2), 467–484 (2004)

    Article  Google Scholar 

  25. Taylor, P.N., Wang, Y., Goodfellow, M., Dauwels, J., Moeller, F., Stephani, U., Baier, G.: A computational study of stimulus driven epileptic seizure abatement. PLoS One (2014). https://doi.org/10.1371/journal.pone.0114316

    Article  Google Scholar 

  26. Medvedeva, T.M., Sysoeva, M.V., van Luijtelaar, G., Sysoev, I.V.: Modeling spike-wave discharges by a complex network of neuronal oscillators. Neur Netw 98, 271–282 (2018). https://doi.org/10.1016/j.neunet.2017.12.002

    Article  Google Scholar 

  27. Lüttjohann, A., Pape, H.-C.: Regional specificity of cortico-thalamic coupling strength and directionality during waxing and waning of spike and wave discharges. Scientif Rep 9(1), 2100 (2019). https://doi.org/10.1038/s41598-018-37985-7

    Article  Google Scholar 

  28. Russo, E., Citraro, R., Constanti, A., Leo, A., Lüttjohann, A., van Luijtelaar, G., De Sarro, G.: Upholding WAG/Rij rats as a model of absence epileptogenesis: hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev 71, 388–408 (2016). https://doi.org/10.1016/j.neubiorev.2016.09.017

    Article  Google Scholar 

  29. Paxinos, G., Watson, C.: The rat brain in stereotaxic coordinates, 6th edn., p. 456. Academic Press, San Diego (2007)

    Google Scholar 

  30. Berg, A.T., Berkovich, S.F., Brodie, M.J., Buchhalter, J., Cross, J.H., van Emde, Boas W., Engel, J., French, J., Glauser, T.A., Mathern, G.W., Moshe, S., Nordli, D., Plouin, P., Scheffer, I.: Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE comission on classification and terminology 2005–2010. Epilepsia (2010). https://doi.org/10.1111/j.1528-1167.2010.02522.x

    Article  Google Scholar 

  31. Meeren, H.K.M., Pijn, J.P.M., van Luijtelaar, E.L.J.M., Coenen, A.M.L., Lopes da Silva, F.H.: Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22(4), 1480–1495 (2002)

    Article  Google Scholar 

  32. Grishchenko, A.A., Sysoeva, M.V., Medvedeva, T.M., van Rijn, C.M., Bezruchko, B.P., Sysoev, I.V.: Comparison of approaches to directed connectivity detection in application to spike-wave discharge study. Cybernetics and Physics, (2020). https://doi.org/10.35470/2226-4116-2020-9-2-86-97

  33. Martins Tenório, V.S.G., Freire, R.C.S., Santana, E.E.C., Variability of complex networks parameters on effective connectivity analysis: an absence epilepsy case.: 5th International symposium on instrumentation systems. Circuits and Transducers (INSCIT), 2021, 1–6 (2021). https://doi.org/10.1109/INSCIT49950.2021.9557251

  34. Marino, A.S., Yang, G.J., Tyrtova, E., Wu, K., Zaveri, H.P., Farooque, P., Spencer, D.D., Bandt, S.K.: Resting state connectivity in neocortical epilepsy: the epilepsy network as a patient-specific biomarker. Clin Neurophys 130(2), 280–288 (2019). https://doi.org/10.1016/j.clinph.2018.11.016

    Article  Google Scholar 

  35. Gabova, A.V., Kuznetsova, G.D., Gnezditskii, V.V., Bazyan, A.S., Obukhov, Y.V.: Method of wavelet transform in neurology: analysis of time and frequency characteristics of typical and atypical discharges of nonconvulsive epilepsy. Ann Clini Experi Neurol 3(4), 39–44 (2009)

    Google Scholar 

  36. Akman, O., Demiralp, T., Ates, N., Onat, F.Y.: Electroencephalographic differences between WAG/Rij and GAERS rat models of absence epilepsy. Epilepsy Res 89(2–3), 185–193 (2010). https://doi.org/10.1016/j.eplepsyres.2009.12.005

    Article  Google Scholar 

  37. Destexhe, A.: Spike-and-wave oscillations based on the properties of GABAB receptors. J Neurosci 18(21), 9099–9111 (1998). https://doi.org/10.1523/JNEUROSCI.18-21-09099.1998

    Article  Google Scholar 

  38. Destexhe, A.: Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? Eur J Neurosci 11(6), 2175–2181 (1999). https://doi.org/10.1046/j.1460-9568.1999.00660.x

    Article  Google Scholar 

  39. Kapustnikov, A.A., Sysoeva, M.V., Sysoev, I.V.: A class of simple networks for modeling spike-wave discharges. Proc. SPIE 11847, 1184703 (2021). https://doi.org/10.1117/12.2589493

  40. van Luijtelaar, E.L., Coenen, A.M.: Two types of electrocortical paroxysms in an inbred strain of rats. Neurosci Lett 70, 393–397 (1986). https://doi.org/10.1016/0304-3940(86)90586-0

    Article  Google Scholar 

  41. van Rijn, C.M., Gaetani, S., Santolini, I., Badura, A., Gabova, A., Fu, J., Watanabe, M., Cuomo, V., van Luijtelaar, G., Nicoletti, F., Ngomba, R.T.: WAG/Rij rats show a reduced expression of CB1 receptors in thalamic nuclei and respond to the CB1 receptor agonist, R(+)WIN55,212–2, with a reduced incidence of spike-wave discharges. Epilepsia 51(8), 1511–1521 (2010). https://doi.org/10.1111/j.1528-1167.2009.02510.x

    Article  Google Scholar 

  42. Al-Mufti, F., Claassen, J.: Neurocritical care: Status epilepticus review. Crit Care Clin 30(4), 751–764 (2014). https://doi.org/10.1016/j.ccc.2014.06.006

    Article  Google Scholar 

  43. Trinka, E., Höfler, J., Zerbs, A.: Causes of status epilepticus. Epilepsia. 53(4), 127–138 (2012)

    Article  Google Scholar 

  44. Sysoeva, M.V., Lüttjohann, A., van Luijtelaar, G., Sysoev, I.V.: Dynamics of directional coupling underlying spike-wave discharges. Neuroscience 314, 75–89 (2016). https://doi.org/10.1016/j.neuroscience.2015.11.044

    Article  Google Scholar 

  45. van Ooytien, A., van Pelt, J., Corner, M.A., Lopes da Silva, F.H.: The emergence of long-lasting transients of activity in simple neural networks. Biol Cybernet 67, 269–277 (1992). https://doi.org/10.1007/BF00204400

    Article  Google Scholar 

  46. Riecke, H., Roxin, A., Madruga, S., Solla, S.A.: Multiple attractors, long chaotic transients, and failure in small-world networks of excitable neurons. Chaos 17(2), 026110 (2007). https://doi.org/10.1063/1.2743611

    Article  MathSciNet  MATH  Google Scholar 

  47. Afraimovich, V.S., Rabinovich, M.I., Varona, P.: Heteroclinic contours in neural ensembles and the winnerless competition principle. Int J Bifurcat Chaos 14(04), 1195–1208 (2014). https://doi.org/10.1142/S0218127404009806

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We devote this study to the memory of professor Evgeny P. Seleznev, who left this world in September 2021. He was outstanding experimenter and has supported and inspired us for many years.

Funding

This work was supported by Russian Science Foundation, Grant No. 19-72-10030.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, N.M., Kulminskiy, D.D., Sysoev, I.V. et al. Transient dynamics in electronic neuron-like circuits in application to modeling epileptic seizures. Nonlinear Dyn 108, 4231–4242 (2022). https://doi.org/10.1007/s11071-022-07379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07379-6

Keywords

Navigation