Log in

A ship motion forecasting approach based on empirical mode decomposition method hybrid deep learning network and quantum butterfly optimization algorithm

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Ship motion (SHM) forecasting value is an important parameter for ship navigation and operation. However, due to the coupling effect of wind, wave, and current, its time series has strong nonlinear characteristics, so it is a great challenge to obtain accurate forecasting results. Therefore, considering the strong nonlinear of SHM time series, firstly, this paper decomposes the original time series into multiple intrinsic mode functions (IMF) using empirical mode decomposition (EMD) technology and then establishes a hybrid deep learning network for each IMF based on convolutional neural network (CNN) and gated recurrent unit (GRU) according to the characteristics of SHM time series. On this basis, the EMD-CNN-GRU (ECG) hybrid forecasting model of SHM is constructed by integrating a component forecasting model. Secondly, considering the difficulty of hyper-parameters selection of ECG model, this paper improves the butterfly optimization algorithm (BOA) based on quantum theory, designs the quantum coding rules of butterfly spatial position, establishes the optimization process of butterfly algorithm based on quantum coding, and then proposes the quantum butterfly optimization algorithm (QBOA). Finally, a hybrid forecasting approach integrating ECG and QBOA is proposed, namely ECG & QBOA. To evaluate the feasibility and performance of the proposed approach. A prediction experiment was carried out with the SHM data of a real ship. The results indicate that, compared with the other comparison models selected in this paper, ECG-based models have significant higher forecasting accuracy (with MAPE values of 10.86% and 12.69% in two experiments, respectively, and with significant accuracy improvement of at least 10% than other compared models), and the QBOA has obtained more appropriate hyper-parameters combination of ECG model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Ship motion (SHM):

Abbreviation of ship six degree of freedom motion

Empirical mode decomposition (EMD):

A signal decomposition technique

Intrinsic mode function (IMF):

The name of the sequence after EMD decomposition

Convolutional neural network (CNN):

A deep learning network

Gate recurrent unit (GRU):

A deep learning network

Long short-term memory (LSTM):

A deep learning network

Depth neural network (DNN):

A deep learning network

Butterfly optimization algorithm (BOA):

A parameter optimization algorithm

Quantum butterfly optimization algorithm (QBOA):

An improved BOA

EMD-CNN-GRU (ECG):

Abbreviation of EMD-CNN-GRU hybrid model

Artificial neural network (ANN):

Traditional neural network

Autoregressive moving average (ARMA):

Time series prediction model

Autoregressive integrated moving average (ARIMA):

Time series prediction model

Support vector machine (SVM):

Time series forecasting method

Mean absolute percentage error (MAPE):

Prediction and evaluation index

Root mean square error (RMSE):

Prediction and evaluation index

X(t):

Original ship motion time series

X max(t):

An upper envelope sequence composed of the maximum of X(t)

X min(t):

A lower envelope sequence composed of the minimum of X(t)

m(t):

The sequence of the average values of Xmax(t) and Xmin(t)

IMF(t):

The sequence of Intrinsic Mode Function

r n(t):

The residual sequence

x k :

xk Represents a feature map of the input tensor of the layer k, which is a one-dimensional tensor

w k :

Filters weight of layer k

b k :

Bias terms

C :

The size of filters

D :

The depth of the feature map

m :

The size of the pooling

s :

The step of pooling

\(\phi\) :

Activation function

x t :

The input sequence of GRU in the tth time step

h t :

Hidden layer output in the tth time step

\(\tilde{h}_{t}\) :

Candidate state in the tth time step

z t :

Update gate

r t :

Reset gate

W r, W z, W t and W :

Weight parameters

f :

f Stands for flavor intensity

c :

c Is sensory modal

a :

a Is the power component

I :

I Is the stimulus intensity related to the fitness value

g θ * :

g* Represents the optimal butterfly position found in the current iteration

r :

r Is a random number

P :

P Is switch probability

P r :

PR is a random number

μ and ν :

μ And v represent the probability amplitude of the basic state

x j :

xj Represents the position of the ith butterfly

x ij max :

xijMax represents the upper search limit of xij

x ij min :

xijMin represents the lower search limit of xij

θ :

θ Represents phase

∆θ :

∆θ Represents phase increment

d i :

The ith number in the time series

D i :

Normalization result of the ith number

d max :

Maximum in time series

D min :

The minimum value in time series

\(\hat{d}\) :

The predicted value of the model

f fitness :

Fitness function value of the algorithm

L t :

Model loss on training data set

L v :

Model loss on validation data set

References

  1. Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineering, Applications. MIT Press, Cambridge MA, 10–14, 1949. https://ieeexplore.ieee.org/book/6267356

  2. Bates, M.R., Bock, D.H., Powell, F.D.: Analog computer applications in predictor design. IRE Trans. Electron. Comput. 6, 143–153 (1957). https://doi.org/10.1109/TEC.1957.5222011

    Article  Google Scholar 

  3. Kaplan, P.: A study of forecasting techniques for aircraft carrier motions at sea. J. Hydronaut. 3, 121–131 (1968). https://doi.org/10.2514/3.62814

    Article  Google Scholar 

  4. Sidar, M., Doolin, B.: On the feasibility of real-time forecasting of aircraft carrier motion at sea. IEEE Trans. Autom. Control 28, 350–356 (1983). https://doi.org/10.1109/TAC.1983.1103227

    Article  Google Scholar 

  5. Triantafyllou, M.S., Bodson, M.: Real time forecasting of marine vessel motions, using kalman filtering techniques. In: Offshore Technology Conference, 1982, pp. 159–173. https://doi.org/10.4043/4388-MS

  6. Yumori, I.: Real time forecasting of ship response to ocean waves using time series analysis. In: Proceeding of OCEANS 81, 16–18 Sept. Boston, MA, USA. https://doi.org/10.1109/OCEANS.1981.1151574 (1981)

  7. Zhao, X.R., Peng, X.Y., Lu, S.P., Wei, W.N.: Extreme short forecasting of big ship motion having wave survey. J. Ship Mech. 7, 39–44 (2003). https://doi.org/10.3969/j.issn.1007-7294.2003.02.005

    Article  Google Scholar 

  8. Sun, L.H., Shen, J.H.: Application of the Grey topological method to predict the effects of ship pitching. J. Mar. Sci. Appl. 7, 292–296 (2008). https://doi.org/10.1007/s11804-008-7111-z

    Article  Google Scholar 

  9. Yin, J.C., Zhou, Z.D., Xu, F., Wang, N.N.: Online ship roll motion forecasting based on grey sequential extreme learning machine. Neurocomputing 129, 168–174 (2014)

    Article  Google Scholar 

  10. Li, M.W., Geng, J., Han, D.F., Zheng, T.J.: Ship motion prediction using dynamic seasonal RvSVR with phase space reconstruction and the chaos adaptive efficient FOA. Neurocomputing 174, 661–680 (2016). https://doi.org/10.1016/j.neucom.2015.09.089

    Article  Google Scholar 

  11. Li, M.W., Geng, J., Hong, W.C., Zhang, L.D.: Periodogram estimation based on LSSVR-CCPSO compensation for forecasting ship motion. Nonlinear Dyn. 97, 2579–2594 (2019). https://doi.org/10.1007/s11071-019-05149-5

    Article  Google Scholar 

  12. Khan, A., Bil, C., Marion, K.: Theory and application of artificial neural networks for the real time forecasting of ship motion. In: Khosla, R., Howlett, R.J., Jain, L.C. (Eds), Knowledge-Based Intelligent Information and Engineering Systems (KES 2005), Lecture Notes in Computer Science, vol. 3681, pp. 1064–1069. Springer, Berlin. https://doi.org/10.1007/11552413_151 (2005)

  13. Kuremoto, T., Kimura, S., Kobayashi, K., Obayashi, M.: Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 137, 47–56 (2014). https://doi.org/10.1016/j.neucom.2013.03.047

    Article  Google Scholar 

  14. Akita, R., Yoshihara, A., Matsubara, T., Uehara, K.: Deep learning for stock forecasting using numerical and textual information. In: Proceeding of IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan, 26–29 June 2016, pp. 1–6. https://doi.org/10.1109/ICIS.2016.7550882

  15. Chen, J., Zeng, G., Zhou, W., Du, W., Lu, K.: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series forecasting and extremal optimization. Energy Convers. Manag. 165, 681–695 (2018). https://doi.org/10.1016/j.enconman.2018.03.098

    Article  Google Scholar 

  16. Suhermi, N., Suhartono, D.D., Prastyo, B.: Ali, Roll motion forecasting using a hybrid deep learning and ARIMA model. Proc. Comput. Sci. 144, 251–258 (2018). https://doi.org/10.1016/j.procs.2018.10.526

    Article  Google Scholar 

  17. Wang, Y., Soltani, M., Hussain, D.M.A.: Ship attitude forecasting based on Input Delay Neural Network and measurements of gyroscopes. In: Proceedings of the 2017 American Control Conference (ACC), pp. 4901–4907. https://doi.org/10.23919/ACC.2017.7963714 (2017)

  18. Peng, X., Zhang, B., Zhou, H.: An improved particle swarm optimization algorithm applied to long short-term memory neural network for ship motion attitude forecasting. Trans. Inst. Meas. Control. 41, 4462–4471 (2019). https://doi.org/10.1177/0142331219860731

    Article  Google Scholar 

  19. Zhang, W., Wu, P., Peng, Y., Liu, D.: Roll motion forecasting of unmanned surface vehicle based on coupled CNN and LSTM. Future Int. 11, 243 (2019)

    Article  Google Scholar 

  20. Liu, Y.H., Duan, W.Y., Huang, L.M., Duan, S.L., Ma, X.W.: The input vector space optimization for LSTM deep learning model in real-time forecasting of ship motions. Ocean Eng. 213, 107681 (2020). https://doi.org/10.1016/j.oceaneng.2020.107681

    Article  Google Scholar 

  21. Lee, D., Lee, S.: Motion predictive control for DPS using predicted drifted ship position based on deep learning and replay buffer. Int. J. Naval Arch. Ocean Eng. 12, 768–783 (2020). https://doi.org/10.1016/j.ijnaoe.2020.09.004

    Article  Google Scholar 

  22. Wang, Y., Wang, H., Zou, D., Fu, H.: Ship roll prediction algorithm based on Bi-LSTM-TPA combined model. J. Mar. Sci. Eng. 9(4), 384 (2020). https://doi.org/10.3390/jmse9040387

    Article  Google Scholar 

  23. Huang, L.M., Duan, W.Y., Han, Y., Yu, D.H.: A hybrid AR-EMD-SVR model for the short-term prediction of nonlinear and non-stationary ship motion. J. Ship Mech. 19, 1033–1049 (2015). https://doi.org/10.3969/j.issn.1007-7294.2015.09.002

    Article  Google Scholar 

  24. Fan, G.F., Peng, L.L., Hong, W.C., Sun, F.: Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression. Neurocomputing 173, 958–970 (2016)

    Article  Google Scholar 

  25. Wang, X.P., Wang, Y.Q.: A Hybrid Model of EMD and PSO-SVR for short-term load forecasting in residential quarters. Math. Probl. Eng. Article ID: 9895639. https://www.hindawi.com/journals/mpe/2016/9895639/ (2016)

  26. He, K.J., Wang, H.Q., Du, J.Z., Zou, Y.C.: Forecasting electricity market risk using empirical mode decomposition (EMD)—based multiscale methodology. Energies 9, 931 (2016)

    Article  Google Scholar 

  27. Bi, S.B., Bi, S.G., Chen, X., Ji, H., Yin, L.: A climate forecasting method based on EMD and ensemble forecasting technique. Asia-Pacific J. Atmos. Sci. 54, 611–622 (2018). https://doi.org/10.1007/s13143-018-0078-z

    Article  Google Scholar 

  28. X.X. Liu, A.B. Zhang, C.M. Shi, H.F. Wang, Filtering and multi-scale RBF forecasting model of rainfall based on EMD method, In: Proceeding of 2009 First International Conference on Information Science and Engineering (CISE 2009), Nan**g, China, 26–28 Dec. 2009, Accession Number: 11281301. https://ieeexplore.ieee.org/document/5455288

  29. **ang, Y., Guo, L., He, L.H., **a, S.L.: Wang, Wang, A SVR–ANN combined model based on ensemble EMD for rainfall forecasting. Appl. Soft Comput. 73, 874–883 (2018)

    Article  Google Scholar 

  30. Zhang, C., Wei, H.K., Zhao, J.S., Liu, T.H., Zhu, T.T., Zhang, K.J.: Short-term wind speed forecasting using empirical mode decomposition and feature selection. Renew. Energy 96, 727–737 (2016)

    Article  Google Scholar 

  31. Kang, A.Q., Tang, Q.X., Yuan, X.H., Lei, X.H., Yuan, Y.B.: Short-term wind speed forecasting using EEMD-LSSVM model. Adv. Meteorol. (2017). https://doi.org/10.1155/2017/6856139

    Article  Google Scholar 

  32. Hong, W.C., Li, M.W., Geng, J., Zhang, Y.: Novel chaotic bat algorithm for forecasting complex motion of floating platforms. Appl. Math. Model. 72, 425–443 (2019). https://doi.org/10.1016/j.apm2019.03.031

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou, B., Shi, A.G.: Empirical mode decomposition based LSSVM for ship motion forecasting. In: Guo, C., Hou, Z.G., Zeng, Z. (Eds) 2013 International Symposium on Neural Networks (ISNN 2013) Advances in Neural Networks, Lecture Notes in Computer Science, vol. 7951, pp. 319–325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39065-4_39

  34. Duan, W.Y., Huang, L.M., Han, Y., Zhang, Y.H., Huang, S.: A hybrid AR-EMD-SVR model for the short-term forecasting of nonlinear and non-stationary ship motion. J. Zhejiang Univ. Sci. A 16, 562–576 (2015). https://doi.org/10.1631/jzus.A1500040

    Article  Google Scholar 

  35. Nie, Z.H., Shen, F., Xu, D.J., Li, Q.H.: An EMD-SVR model for short-term forecasting of ship motion using mirror symmetry and SVR algorithms to eliminate EMD boundary effect. Ocean Eng. 217, 107927 (2020). https://doi.org/10.1016/j.oceaneng.2020.107927

    Article  Google Scholar 

  36. Rere, L.M.R., Fanany, M.I., Arymurthy, A.M.: Simulated annealing algorithm for deep learning. Proc. Comput. Sci. 72, 137–144 (2015). https://doi.org/10.1016/j.procs.2015.12.114

    Article  Google Scholar 

  37. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23, 715–734 (2019). https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  38. Arora, S., Singh, S.: An improved butterfly optimization algorithm with chaos. J. Intell. Fuzzy Syst. 32, 1079–1088 (2017). https://doi.org/10.3233/JIFS-16798

    Article  MATH  Google Scholar 

  39. Mohammadi, A., Hamid Zahiri, S.: Inclined planes system optimization algorithm for IIR system identification. Int. J. Mach. Learn. Cybern. 9, 541–558 (2018). https://doi.org/10.1007/s13042-016-0588-x

    Article  Google Scholar 

  40. Mirjalili, S., Mohammad Mirjalili, S., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  41. Fei, Z., Wu, Z., **ao, Y., He, W.: A new short-arc fitting method with high precision using Adam optimization algorithm. Optik 212, 164788 (2020). https://doi.org/10.1016/j.ijleo.2020.164788

    Article  Google Scholar 

  42. Arora, S., Singh, S., Yetilmezsoy, K.: A modified butterfly optimization algorithm for mechanical design optimization problems. J. Braz. Soc. Mech. Sci. Eng. 40, 21 (2018). https://doi.org/10.1007/s40430-017-0927-1

    Article  Google Scholar 

  43. Arora, S., Anand, P.: Learning automata-based butterfly optimization algorithm for engineering design problems. Int. J. Comput. Mater. Sci. Eng. 7, 1850021 (2018). https://doi.org/10.1142/S2047684118500215

    Article  Google Scholar 

  44. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 6, 580–593 (2002). https://doi.org/10.1109/TEVC.2002.804320

    Article  Google Scholar 

  45. Zhang, X., Shen, F., Zhao, J., Yang, G.: Time series forecasting using GRU neural network with multi-lag after decomposition. In: Liu, D., **e, S., Li, Y., Zhao, D., El-Alfy, E.S. (Eds) Neural Information Processing (ICONIP 2017), Lecture Notes in Computer Science, vol. 10638, pp. 523–532. Springer, Cham. https://springer.longhoe.net/chapter/10.1007%2F978-3-319-70139-4_53 (2017)

  46. Luo, L.: Network text sentiment analysis method combining LDA text representation and GRU-CNN. Pers. Ubiquit. Comput. 23, 405–412 (2019). https://doi.org/10.1007/s00779-018-1183-9

    Article  Google Scholar 

  47. **, C., **, S., Qin, L.: Attribute selection method based on a hybrid BPNN and PSO algorithms. Appl. Soft Comput. 12, 2147–2155 (2012). https://doi.org/10.1016/j.asoc.2012.03.015

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the following project grants, National Key Research and Development Program of China (2019YFB1504403); High-tech Ship Technology Project (MC-202030-H04); Heilongjiang Excellent Youth Fund Project (YQ2021E015); National Natural Science Foundation of China (No.51509056); and Ministry of Science and Technology, Taiwan (MOST 110-2410-H-161-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chiang Hong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MW., Xu, DY., Geng, J. et al. A ship motion forecasting approach based on empirical mode decomposition method hybrid deep learning network and quantum butterfly optimization algorithm. Nonlinear Dyn 107, 2447–2467 (2022). https://doi.org/10.1007/s11071-021-07139-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07139-y

Keywords

Navigation