Log in

The dynamic of repulsion of spiral waves from excitable regions

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article mainly studies the repulsion dynamics of spiral waves near the unexcitable zone. We propose that this repulsion behavior is caused by changes in the natural frequency of the spiral wave near the unexcitable boundary. Specifically, assuming that the drift motion of the spiral wave near the unexcitable boundary still satisfies the kinematic equation under the action of a periodic external force, the change in the natural frequency leads to the appearance of the repulsion motion. By the numerical simulation of the Barkley model with circular and flat unexcitable regions, it is found that the simulation results are consistent with the above assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–636 (1972)

    Article  Google Scholar 

  2. Davidenko, J.M., Pertsov, A.V., Salomonsz, R., Baxter, W., Jalife, J.: Stationary and drifting spiral waves of excitation in isolated cardiac. Nature 355, 349–351 (1992)

    Article  Google Scholar 

  3. Lee, K.J., Cox, E.C., Goldstein, R.E.: Competing patterns of signaling activity in dictyostelium discoideum. Phys. Rev. Lett. 76, 1174–1177 (1996)

    Article  Google Scholar 

  4. Bär, M., Kevrekidis, I.G., Rotermund, H.-H., Ertl, G.: Pattern formation in composite excitable media. Phys. Rev. E 52, R5739–R5742 (1995)

    Article  Google Scholar 

  5. Barkley, D.: Linear stability analysis of rotating spiral waves in excitable media. Phys. Rev. Lett. 68, 2090–2093 (1992)

    Article  Google Scholar 

  6. Winfree, A.T.: Varieties of spiral wave behavior: an experimental approach to the theory of excitable media. Chaos 1, 303–334 (1991)

    Article  MathSciNet  Google Scholar 

  7. Alonso, S., Sagus, F., Mikhailov, A.S.: Negative-tension instability of scroll waves and winfree turbulence in the oregonator model. J. Phys. Chem. A 110, 12063–12071 (2006)

    Article  Google Scholar 

  8. Li, G., Ouyang, Q., Petrov, V., Swinney, H.L.: Transition from simple rotating chemical spirals to meandering and traveling spirals. Phys. Rev. Lett. 77, 2105–2108 (1996)

    Article  Google Scholar 

  9. Sandstede, B., Scheel, A.: Superspiral structures of meandering and drifting spiral waves. Phys. Rev. Lett. 86, 171–174 (2001)

    Article  Google Scholar 

  10. Wulff, C.: Bifurcation theory of meandering spiral waves. In: Parisi, Z., Müller, S.C., Zimmermann, W. (eds.) Nonlinear Physics of Complex Systems. Springer, Berlin (1996)

    Google Scholar 

  11. Mikhailov, A.S., Showalter, K.: Control of waves, patterns and turbulence in chemical systems. Phys. Rep. 425, 79–194 (2006)

    Article  MathSciNet  Google Scholar 

  12. Rostami, Z., Jafari, S.: Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction. Cogn. Neurodyn. 12, 235–254 (2018)

    Article  Google Scholar 

  13. Ma, J., Wu, F.Q., Hayat, T., Zhou, P., Tang, J.: Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media. Phys. A 486, 508–516 (2017)

    Article  MathSciNet  Google Scholar 

  14. Zykov, V.S., Steinbock, O., Müuller, S.C.: External forcing of spiral waves. Chaos 4, 509–518 (1994)

    Article  Google Scholar 

  15. Muñuzuri, A.P., Pérez-Muñuzuri, V., Pérez-Villar, V.: Attraction and repulsion of spiral waves by localized inhomogeneities in excitable media. Phys. Rev. E 58, R2689–R2692 (1998)

    Article  Google Scholar 

  16. Zhang, H., Wu, N.J., Ying, H.P., Hu, G., Hu, B.: Drift of rigidly rotating spirals under periodic and noisy illuminations. J. Chem. Phys. 121, 7276–7280 (2004)

    Article  Google Scholar 

  17. Luther, S., Fenton, F.H., Kornreich, B.G., Squires, A., Bittihn, P., Hornung, D., Zabel, M., Flanders, J., Gladuli, A., Campoy, L., Cherry, E.M., Luther, G., Hasenfuss, G., Krinsky, V.I., Pumir, A., Gilmour, Ro. F., Bodenschatz, E.: Low-energy control of electrical turbulence in the heart. Nature 475, 235–239 (2011)

  18. Fenton, F.H., Luther, S., Cherry, E.M., Otani, N.F., Krinsky, V., Pumir, A., Bodenschatz, E., Gilmour, R.F.: Termination of atrial fibrillation using pulsed low-energy far-field stimulation. Circulation 120, 467–476 (2009)

    Article  Google Scholar 

  19. Chen, J.X., Guo, M.M., Ma, J.: Termination of pinned spirals by local stimuli. Europhys. Lett. 113, 38004 (2016)

    Article  Google Scholar 

  20. Zou, X., Levine, H., Kessler, D.A.: Interaction between a drifting spiral and defects. Phys. Rev. E 47, R800–R803 (1993)

    Article  Google Scholar 

  21. Isomura, A., Hörning, M., Agladze, K., Yoshikawa, K.: Eliminating spiral waves pinned to an anatomical obstacle in cardiac myocytes by high-frequency stimuli. Phys. Rev. E 78, 066216 (2008)

    Article  Google Scholar 

  22. Pazó, D., Kramer, L., Pumir, A., Kanani, S., Efimov, I., Krinsky, V.: Pinning force in active media. Phys. Rev. Lett. 93, 168303 (2004)

    Article  Google Scholar 

  23. Bittihn, P., Squires, A., Luther, G., Bodenschatz, E., Krinsky, V., Parlitz, U., Luther, S.: Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable media. Philos. Trans. R. Soc. A 368, 2221–2236 (2010)

    Article  MathSciNet  Google Scholar 

  24. Hörning, M., Isomura, A., Jia, Z.H., Entcheva, E., Yoshikawa, K.: Utilizing the eikonal relationship in strategies for reentrant wave termination in excitable media. Phys. Rev. E 81, 056202 (2010)

    Article  Google Scholar 

  25. Pumir, A., Sinha, S., Sridhar, S., Argentina, M., Hörning, M., Filippi, S., Cherubini, C., Luther, S., Krinsky, V.: Wave-train-induced termination of weakly anchored vortices in excitable media. Phys. Rev. E 81, 010901 (2010)

    Article  Google Scholar 

  26. Chen, J.X., Peng, L., Ma, J., Ying, H.P.: Liberation of a pinned spiral wave by a rotating electric pulse. Europhys. Lett. 107, 38001 (2014)

    Article  Google Scholar 

  27. Wu, F.Q., Wang, C.N., Xu, Y., Ma, J.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)

    Article  Google Scholar 

  28. Biktashev, V.N., Holden, A.V.: Resonant drift of autowave vortices in two dimensions and the effects of boundaries and inhomogeneities. Chaos Solitons Fractals 5, 575–622 (1995)

    Article  Google Scholar 

  29. Zemlin, C.W., Pertsov, A.M.: Anchoring of drifting spiral and scroll waves to impermeable inclusions in excitable media. Phys. Rev. Lett. 109, 038303 (2012)

    Article  Google Scholar 

  30. Barkley, D.: A model for fast computer simulation of waves in excitable media. Phys. D Nonlinear Phenom. 49, 61–70 (1991)

    Article  Google Scholar 

  31. Dowle, M., Mantel, R.M., Barkley, D.: Fast simulations of waves in three-dimensional excitable media. Int. J. Bifurc. Chaos 7, 2529–2546 (1997)

    Article  MathSciNet  Google Scholar 

  32. Barkley D.: EZ-SPIRAL source code (Version ezspiral\_3\_2.tar.gz), http://homepages.warwick.ac.uk/~masax/Software/ez_software.html

Download references

Acknowledgements

This work was supported by CSC (Grants No. 201806865012) and NSFC (Grants No. 11871278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningjie Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, N., Ying, H. The dynamic of repulsion of spiral waves from excitable regions. Nonlinear Dyn 103, 979–986 (2021). https://doi.org/10.1007/s11071-020-06086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06086-4

Keywords

Navigation