Log in

Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We have investigated the femtosecond soliton propagation in inhomogeneous fiber, which is described by the modified inhomogeneous Hirota equation with variable coefficient (MIH-vc). With the aid of AKNS method, corresponding Lax pair is constructed. By virtue of the Darboux transformation method and symbolic computation, the analytic one- and two-soliton solutions are explicitly obtained. Using obtained solutions, we graphically discuss the features of femtosecond solitons in modified inhomogeneous Hirota system by changing the profile of variable coefficients. We analyze various form of group velocity dispersion, third order dispersion and nonlinearity parameter for periodic amplification system, exponentially distributed system, parabolic solitons, periodic exponentially modulated system, which will be observable in the future experiments. These results are potentially useful in future experiments and soliton control for long-distance optical communication. Finally, the soliton solutions of the MIH-vc equation in double Wronskian form is constructed and further verified using the Wronskian technique by substitute in bilinear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical physics in dispersive dielectric fibers. Appl. Phys. Lett. 23, 142 (1973)

    Article  Google Scholar 

  2. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in Optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)

    Article  Google Scholar 

  3. Nakkeeran, K.: Optical solitons in erbium-doped fibres with higher-order effects and pum**. J. Phys. A Math. Gen. 33, 4377 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hao, R.Y., Li, L., Li, Z.H., Zhou, G.S.: Exact multi-soliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients. Phys. Rev. E. 70, 066603 (2004)

  5. Xue, Y.S., Tian, B., Ai, W.B., Qi, F.H., Guo, R., Qin, B.: Soliton interactions in a generalized inhomogeneous coupled Hirota–Maxwell–Bloch system. Nonlinear Dyn. 67, 2799–2806 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kodama, Y., Hasegawa, A.: Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron. 23, 510 (1987)

    Article  Google Scholar 

  7. Vicencio, R.A., Molina, M.I., Kivshar, Y.S.: Polarization instability, steering and switching of discrete vector solitons. Phys. Rev. E. 71, 056613 (2005)

    Article  MathSciNet  Google Scholar 

  8. Senthilnathan, K., Li, Q., Nakkeeran, K., Wai, P.K.A.: Robust pedestal-free pulse compression in cubic–quintic nonlinear media. Phys. Rev. A. 78, 033835 (2008)

    Article  Google Scholar 

  9. Liu, W.J., Meng, X.H., Cai, K.J., Lu, X., Xu, T., Tian, B.: Analytic study on soliton-effect pulse compression in dispersion-shifted fibers with symbolic computation. J. Mod. Opt. 55, 1331–1344 (2008)

    Article  MATH  Google Scholar 

  10. Ponomarenko, S.A., Agrawal, G.P.: Do soliton like self-similar waves exist in nonlinear optical media? Phys. Rev. Lett. 97, 013901 (2006)

    Article  Google Scholar 

  11. Liu, W.J., Tian, B., Wang, P., Jiang, Y., Sun, K., Li, M., Qu, Q.X.: A new approach to the analytic soliton solutions for the variable-coefficient higher-order nonlinear Schrödinger model in inhomogeneous optical fibers. J. Mod. Opt. 57, 309–315 (2010)

    Article  MATH  Google Scholar 

  12. Wu, X.F., Hua, G.S., Ma, Z.Y.: Evolution of optical solitary waves in a generalized nonlinear Schrödinger equation with variable coefficients. Nonlinear Dyn. 70, 2259–2267 (2012)

  13. Zhu, H.P.: Nonlinear tunneling for controllable rogue waves in two dimensional graded-index waveguides. Nonlinear Dyn. 72, 873–882 (2013)

    Article  Google Scholar 

  14. He, J.S., Tao, Y.S., Porsezian, K., Fokas, A.S.: Rogue wave management in an inhomogeneous nonlinear fiber with higher order effects. J. Nonli. Math. Phys. 20, 407–419 (2013)

    Article  MathSciNet  Google Scholar 

  15. Guo, R., Hao, H.Q.: Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers. Ann. Phys. 344, 10–16 (2014)

    Article  Google Scholar 

  16. Xue, Y.S., Tian, B., Ai, W.B., Li, M., Wang, P.: Integrability and optical solitons in a generalized variable-coefficient coupled Hirota–Maxwell–Bloch system in fiber optics. Opt. Laser Technol. 48, 153–159 (2013)

    Article  Google Scholar 

  17. Tian, H., Li, Z., Zhou, G.S.: Stable propagation of ultrashort optical pulses in modified higher-order nonlinear Schrödinger equation. Opt. Commun. 205, 221–226 (2002)

    Article  Google Scholar 

  18. Ablowitz, M.J., Kaup, D.J., Newell, A.C., et al.: Nonlinear evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  19. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  20. Geng, X., Lv, Y.: Darboux transformation for an integrable generalization of the nonlinear Schrödinger equation. Nonlinear Dyn. 69, 1621–1630 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhang, H.Q., Zhai, B.G., Wang, X.L.: Soliton and breather solutions of the modified nonlinear Schrödinger equation. Phys. Scr. 85, 015007 (2012)

    Article  Google Scholar 

  22. Qi, F.H., Ju, H.M., Meng, X.H., Li, J.: Conservation laws and Darboux transformation for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients in nonlinear optics. Nonlinear Dyn. doi:10.1007/s11071-014-1382-5

  23. Yang, R.C., Li, L., Hao, R.Y., Li, Z.H., Zhou, G.S.: Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrödinger equation. Phys. Rev. E 71, 036616 (2005)

    Article  MathSciNet  Google Scholar 

  24. Lü, X., Zhu, H.W., Meng, X.H., Yang, Z.C., Tian, B.: Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications. J. Math. Anal. Appl. 336, 1305 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dai, C.Q., Xu, Y.J., Chen, R.P., Zhang, J.F.: Self-similar optical beam in nonlinear waveguides. Eur. Phys. J. D 59, 457–461 (2010)

    Article  Google Scholar 

  26. Zhang, J.L., Li, B.A., Wang, M.L.: The exact solutions and the relevant constraint conditions for two nonlinear Schrödinger equations with variable coefficients. Chaos Soliton. Fract. 39, 858–865 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zheng, H., Wu, C., Wang, Z., Yu, H., Liu, S., Li, X.: Propagation characteristics of chirped soliton in periodic distributed amplification systems with variable coefficients. Optik 123, 818–822 (2012)

    Article  Google Scholar 

  28. Mani Rajan, M.S., Mahalingam, A., Uthayakumar, A., Porsezian, K.: Observation of two soliton propagation in an erbium doped inhomogeneous lossy fiber with phase modulation. Commun. Nonlinear Sci. Numer. Simul. 18, 1410–1432 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yang, R.C., Hao, R.Y., Li, L., Shi, X., Li, Z., Zhou, G.S.: Exact gray multi-soliton solutions for nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 253, 177 (2005)

    Article  Google Scholar 

  30. Jiang, L.H., Wu, H.Y.: Spatiotemporal self-similar waves for the (3+1)-dimensional inhomogeneous cubic–quintic nonlinear medium. Opt. Commun. 284, 2022–2026 (2011)

    Article  Google Scholar 

  31. Dai, C.Q., Qin, Z.Y., Zheng, C.L.: Multi-soliton solutions to the modified nonlinear Schrödinger equation with variable coefficients in inhomogeneous fibers. Phys. Scr. 85, 045007 (2012)

    Article  Google Scholar 

  32. Dai, C.Q., Xu, Y.J.: Spatial bright and dark similaritons on cnoidal wave backgrounds in 2D waveguides with different distributed transverse diffractions. Opt. Commun. 311, 216–221 (2013)

    Article  Google Scholar 

  33. Serkin, V.N., Belyaeva, T.L.: Optimal control of optical soliton parameters: Part 1. The Lax representation in the problem of soliton management. Quantum Electron 31, 1007–1015 (2001)

    Article  Google Scholar 

  34. Li, B., Chen, Y.: Symbolic computation and solitons of the nonlinear Schrödinger equation in inhomogeneous optical fiber media. Chaos Soliton. Fract. 33, 532 (2007)

    Article  Google Scholar 

  35. Guo, R., Tian, B., Lü, X., Zhang, H.Q., Liu, W.J.: Darboux transformation and soliton solutions for the generalized coupled variable coefficient nonlinear Schrödinger Maxwell Bloch system with symbolic computation. Comput. Math. Math. Phys. 52, 565–577 (2012)

    Article  MathSciNet  Google Scholar 

  36. Fang, F., **ao, Y.: Stability of chirped bright and dark soliton-like solutions of the cubic complex Ginzburg–Landau equation with variable coefficients. Opt. Commun. 268, 305–310 (2006)

    Article  Google Scholar 

  37. Wang, J., Li, L., Jia, S.: Exact chirped gray soliton solutions of the nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 274, 223–230 (2007)

    Article  Google Scholar 

  38. Freeman, N.C., Nimmo, J.J.: Soliton solutions of the Korteweg-de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique. Phys. Lett. A 95, 1–3 (1983)

    Article  MathSciNet  Google Scholar 

  39. Tian, B., Gao, Y.T.: Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers. Phys. Lett. A 342, 228 (2005)

  40. Tian, B., Gao, Y.T.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: new transformation with burstons, brightons and symbolic computation. Phys. Lett. A 359, 241 (2006)

    Article  Google Scholar 

  41. Tian, B., Gao, Y.T.: Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas. Phys. Lett. A 362, 283 (2007)

  42. Lv, X., Zhu, H.W., Yao, Z.Z., Meng, X.H., Zhang, C., Zhang, C.Y., Tian, B.: Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrödinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications. Ann. Phys. 323, 1947–1955 (2008)

    Article  Google Scholar 

  43. Sun, W.R., Tian, B., Jiang, Y.: Double-Wronskian solitons and rogue waves for the inhomogeneous nonlinear Schrödinger equation in an inhomogeneous plasma. Ann. Phys. 343, 215–227 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  44. Freeman, N.C.: Soliton solutions of non-linear evolution equations. IMA J. Appl. Math. 32, 125–145 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  45. Nimmo, J.J., Freeman, N.C.: A method of obtaining the \(N\)-soliton solution of the Boussinesq equation in terms of a wronskian. Phys. Lett. A 95, 4–6 (1983)

    Article  MathSciNet  Google Scholar 

  46. Freeman, N.C.: Soliton solutions of non-linear evolution equations. IMA J. Appl. Math. 32, 125–141 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Mani Rajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani Rajan, M.S., Mahalingam, A. Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction. Nonlinear Dyn 79, 2469–2484 (2015). https://doi.org/10.1007/s11071-014-1826-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1826-y

Keywords

Navigation