Log in

Numerical modeling of a high magnitude debris-flow event occurred in Brazil

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Debris flows are rapid downslope, gravity-driven movements of highly viscous, dense and concentrated/hyperconcentrated fluid materials. In Brazil, the most susceptible area to this type of mass movement comprises the oriented foothills of Serra do Mar. Several numerical modeling approaches have been created to measure, identify, predict, and monitor debris-flow processes, for example, RAMMS (Rapid mass movement simulation), a single-phase numerical model that simulates the propagation of debris flow using the Voelmy rheology. In this work, the RAMMS code is applied to model the debris-flow event that occurred in 1967 in Caraguatatuba County (State of Sao Paulo). Induced by heavy rains, this debris-flow event is one of highest magnitude recorded in Brazil, with more than 100 deaths and major socioeconomic and environmental impacts. Studies involving debris-flow modeling are still recent in Brazil, and they are relevant because can be applied to support the delineation of the affected area and the understanding of the dynamics of these phenomena. Thus, back-analysis studies are applied to assist the model setup and the results evaluations. Field observations and the back-analysis studies showed that the debris-flow processes in the Serra do Mar region are strictly granular, which helped the modeling step, and the debris are preferentially deposited in regions with low slopes (< 5°). The model results can be used to support political and engineering actions aimed at mitigating the effects of future events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Nery (2016)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Almeida FFM (1964) Fundamentos Geológicos do Relevo Paulista. Bol Inst Geogr Geol 41:169–263. https://doi.org/10.33958/revig.v39i3.600. (in Portuguese)

    Article  Google Scholar 

  • Alvarado LAS (2006) Simulação bidimensional de corridas de detritos usando o Método de Elementos Discretos. Dissertation, PUC-RJ (in Portuguese)

  • Armanini A, Fraccarollo LR, G, (2009) Two-dimensional simulation of debris flows in erodible channels. Comput Geosci 35(5):993–1006. https://doi.org/10.1016/j.cageo.2007.11.008

    Article  Google Scholar 

  • Augusto Filho O (1993) O estudo das corridas de massa em regiões serranas tropicais: um exemplo de aplicação no município de Ubatuba, SP. In: Congresso Brasileiro de Geologia de Engenharia, 7, Poços de Caldas, Brazil (in Portuguese)

  • Balaguer LP, Garcia MDGM, Reverte FC, Ribeiro LMDAL (2023) To what extent are ecosystem services provided by geodiversity affected by anthropogenic impacts? A quantitative study in Caraguatatuba, Southeast coast of Brazil. Land Use Policy 131:106708. https://doi.org/10.1016/j.landusepol.2023.106708

    Article  Google Scholar 

  • Barlow J, Martin Y, Franklin SE (2003) Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains, British Columbia. Can J Remote Sens 29:510–517. https://doi.org/10.5589/m03-018

    Article  Google Scholar 

  • Bartelt P, Buehler Y, Christen M, Deubelbeiss Y, Graf C, McArdell BW, Salz M, Schneider M (2017) RAMMS—a modelling system for debris flows in research and practice—user manual v1.7.0/Debris flow. WSL Institute for Snow and Avalanche Research SLF

  • Beguerıa S, Van Asch TWJ, Malet JP, Grondahl S (2009) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazard 9:1897–1909. https://doi.org/10.5194/nhess-9-1897-2009

    Article  Google Scholar 

  • Below R, Wirtz A, Guha-Sapir D (2009) Disaster category classification and peril terminology for operational purposes, Annex II. https://doc.emdat.be/docs/data-structure-and-content/disaster-classification-system/

  • Bernard M, Boreggio M, Degetto M, Gregoretti C (2019) Model-based approach for design and performance evaluation of works controlling stony debris flow with an application to a case study at Rovina di Cancia (Venetian Dolomites, Northeast Italy). Sci Total Environ 688:1373–1388. https://doi.org/10.1016/j.scitotenv.2019.05.468

    Article  CAS  Google Scholar 

  • Borga M, Stoffel M, Marchi L, Marra F, Jakob M (2014) Hydrogeomorphic response to extreme rainfall in headwater systems: flash floods and debris flows. J Hydrol 518:194–205. https://doi.org/10.1016/j.jhydrol.2014.05.022

    Article  Google Scholar 

  • Bozhinskiy A, Nazarov AN (2000) Two-phase model of Debris flows. In: 2nd international conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, 2, Davos, Switzerland, 2000, pp. 263–269.

  • Cabral VC, Reis FAGV, D’Affonseca FM, Lucía A, dos Santos Corrêa CV, Veloso V, Gramani MF, Ogura AT, Lazaretti AF, Vemado F, Pereira Filho AJ, Cristina dos Santos C, Sampaio Lopes ES, Rabaco LMR, Giordano LC, Zarfl C (2021) Characterization of a landslide-triggered debris flow at a rainforest-covered mountain region in Brazil. Nat Hazards 108:3021–3043. https://doi.org/10.1007/s11069-021-04811-9

    Article  Google Scholar 

  • Cabral V, Reis FAGV, Veloso V, Correa C, Kuhn C, Zarfl C (2022a) The consequences of debris flows in Brazil: a historical analysis based on recorded events in the last 100 years. Landslides 19:1–19. https://doi.org/10.1007/s10346-022-01984-7

    Article  Google Scholar 

  • Cabral VC, Reis FAGV, Mendoza CM, Oliveira A (2022b) Model-based assessment of shallow landslides susceptibility at a petrochemical site in Brazil. Rev Bras Geomorfol 23(2):1394–1419. https://doi.org/10.20502/rbg.v23i2.2084

    Article  Google Scholar 

  • Cabral V, Reis F, Veloso V, Ogura A, Zarfl C (2023) A multi-step hazard assessment for debris-flow prone areas influenced by hydroclimatic events. Eng Geol 313:106961. https://doi.org/10.1016/j.enggeo.2022.106961

    Article  Google Scholar 

  • Cerri RI, Reis FAGV, Gramani MF, Giordano LC, Zaine JE (2017) Landslides Zonation Hazard: relation between geological structures and landslides occurrence in hilly tropical regions of Brazil. An Acad Bras Ciênc 89(04):2609–2623. https://doi.org/10.1590/0001-3765201720170224

    Article  Google Scholar 

  • Cerri RI, Reis FAGV, Gramani M, Rosolen V, Luvizotto GL, Giordano LC, Gabelini BM (2018) Assessment of landslide occurrences in Serra do Mar mountain range using kinematic analyses. Environ Earth Sci. https://doi.org/10.1007/s12665-018-7508-1

    Article  Google Scholar 

  • Cerri RI, Rosolen VS, Reis FAGV, Pereira Filho AJ, Vemado F, Giordano LC, Gabelini BM (2020) The assessment of soil chemical, physical, and structural properties as landslide predisposing factors in the Serra do Mar mountain range (Caraguatatuba, Brazil). Bull Eng Geol Environ 79:3307–3320. https://doi.org/10.1007/s10064-020-01791-1

    Article  CAS  Google Scholar 

  • Chieregati LA, Theodorovicz AMG, Theodorovicz A, Menezes RG, Chiodi Filho C, Ramalho R (1982) Projeto folhas Natividade da Serra e Caraguatatuba: Relatório Final. São Paulo. Companhia de Pesquisa de Recursos Minerais, Diretoria da Área de Pesquisas. Superintendência Regional de São Paulo (in Portuguese)

  • Coe JA, Kinner DA, Godt JW (2008) Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado. Geomorphology 96:270–297. https://doi.org/10.1016/j.geomorph.2007.03.017

    Article  Google Scholar 

  • Collins TK (2008) Debris flows caused by failure of fill slopes: early detection, warning, and loss prevention. Landslides 5(1):107–120. https://doi.org/10.1007/s10346-007-0107-y

    Article  Google Scholar 

  • Conterato L (2014) Uso do programa RAMMS na modelagem de corridas de detritos e previsão de áreas atingidas: estudo do caso de Quitite-Papagaio. Dissertation, Federal University of Rio Grande do Sul (UFRGS) (in Portuguese)

  • Corrêa CVS, Vieira Reis FAG, Giordano LC, Bressane A, Chaves CJ, Amaral AMC, Brito HD, Medeiros GA (2017) Geo-environmental zoning using physiographic compartmentalization: a proposal for supporting sustainable decision-making. Anais Acad Bras Cienc 89:1503–1530. https://doi.org/10.1590/0001-3765201720160915

    Article  Google Scholar 

  • Corrêa CVS, Vieira Reis FAG, Giordano LC, Cabral VC, Gramani MF, Gabelini BM, Duz BG, Veloso VQ (2021) Assessment of the Potentiality to the Debris-Flow Occurrence from Physiographic and Morphometrics Parameters: a Case Study in Santo Antônio Basin (Caraguatatuba, São Paulo State, Brazil). Anuário Inst Geociênc - UFRJ, 44:1–14. https://doi.org/10.11137/1982-3908_2021_44_43313

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263. https://doi.org/10.1007/s10064-013-0538-8

    Article  Google Scholar 

  • Costa JE (1988) Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 113–122

    Google Scholar 

  • Coussot P, Meunier M (1996) Recognition, classification and mechanical description of debris flow. Earth Sci Rev 40:209–227. https://doi.org/10.1016/0012-8252(95)00065-8

    Article  Google Scholar 

  • Cruz O (1974) A Serra do Mar e o Litoral na Área de Caraguatatuba-SP: Contribuição à Geomorfologia Litorânea Tropical. Ph.D. Thesis, Geography, São Paulo University (USP) (in Portuguese)

  • Cruz O (1990) Contribuição geomorfológica ao estudo de escarpas da Serra do Mar. Rev Inst Geol 11:9–20. https://doi.org/10.5935/0100-929X.19900002. (in Portuguese)

    Article  Google Scholar 

  • Cruz O (2000) Studies on the geomorphic processes of overland flow and mass movements in the Brazilian geomorphology. Rev Bras Geociênc 30:504–507

    Article  Google Scholar 

  • Daunt ABP, Silva TSF (2019) Beyond the park and city dichotomy: Land use and land cover change in the northern coast of São Paulo (Brazil). Landsc Urban Plan 189:352–361. https://doi.org/10.1016/j.landurbplan.2019.05.003

    Article  Google Scholar 

  • Daunt ABP, Inostroza L, Hersperger AM (2021) The role of spatial planning in land change: an assessment of urban planning and nature conservation efficiency at the southeastern coast of Brazil. Land Use Policy 111:105771. https://doi.org/10.1016/j.landusepol.2021.105771

    Article  Google Scholar 

  • Davies TR, Phillips TJ, Pearce AJ (1992) Debris flow behaviour—an integrated overview. IAHS Publ 209:217–225

    Google Scholar 

  • De Ploey J, Cruz O (1979) Landslides in the Serra do Mar, Brazil. CATENA 6(2):111–122. https://doi.org/10.1016/0341-8162(79)90001-8

    Article  Google Scholar 

  • Debortoli NS, Camarinha PIM, Marengo JA, Rodrigues RR (2017) An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Nat Hazards 86:557–582. https://doi.org/10.1007/s11069-016-2705-2

    Article  Google Scholar 

  • Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. J Geophys Res 106:553–566. https://doi.org/10.1029/2000JB900330

    Article  Google Scholar 

  • Denlinger RP, Iverson RM (2004) Granular avalanches across irregular threedimensional terrain. 1. Theory and computation. J Geophys Res 109:F01014. https://doi.org/10.1029/2003JF000085

    Article  Google Scholar 

  • Dowling CA, Santi PM (2014) Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Nat Hazards 71:203–227. https://doi.org/10.1007/s11069-013-0907-4

    Article  Google Scholar 

  • Emplasa - Empresa Paulista de Planejamento Metropolitano S/A (2011) Projeto Mapeia São Paulo – Vale do Paraíba e Litoral Norte. Orthophotos, 1:10,000 scale

  • Franck AG (2022) Mapeamento de Perigo a movimentos de massa úmida com o SHALSTAB e Hyper KANAKO na bacia do Rio do Boi, região sul do Brasil. Dissertation, Federal University of Rio Grande do Sul (UFRGS) (in Portuguese)

  • Frank F, McArdell BW, Oggier N, Baer P, Christen M, Vieli A (2017) Debris-flow modeling at Meretschibach and Bondasca catchments, Switzerland: sensitivity testing of field-data-based entrainment model. Nat Hazard 17(5):801–815. https://doi.org/10.5194/nhess-17-801-2017

    Article  Google Scholar 

  • Frekhaug MH (2015) An assessment of prediction tools to Norwegian debris flows. Dissertation, Norwegian University of Science and Technology

  • Fúlfaro V, Ponçano WL, Bistrichi CA, Stein DP (1976) Escorregamentos de Caraguatatuba: expressão atual, e registro na coluna sedimentar da planície costeira adjacente. In: Congresso Brasileiro de Geologia de Engenharia, 1, Rio de Janeiro, Brazil (in Portuguese)

  • Giordano LC, Marques ML, Reis FAGV, Corrêa CVS, Riedel PS (2023) The suitability of different vegetation indices to analyses area with landslide propensity using Sentinel -2 Image. Boletim de Ciências Geodésicas, 29(e2023008). https://doi.org/10.1590/s1982-21702023000300008

  • Goerl RF, Kobiyama M, Santos I (2012) Hidrogeomorfologia: princípios, conceitos, processos e aplicações. Rev Bras Geomorfol 13(2):103–111. https://doi.org/10.20502/rbg.v13i2.166. (in Portuguese)

    Article  Google Scholar 

  • Gomes RAT (2006) Modelagem de Previsão de Movimentos de Massa a Partir da Combinação de Modelos de Escorregamentos e Corridas de Massa. Ph.D. Thesis, Geography, Federal University of Rio de Janeiro (UFRJ) (in Portuguese)

  • Gomes CLR, Ogura AT, Gramani MF, Corsi AC, Alameddine N (2008a) Retro-análise da corrida de massa ocorrida no ano de 1967 nas encostas da Serra do Mar, vale dos rios Camburu, Pau D’ Alho e Canivetal, município de Caraguatatuba - SP: quantificação volumétrica dos sedimentos depositados nas planícies de inundação. In: Congresso Brasileiro de Geologia de Engenharia e Ambiental, 12, Recife, Brazil (in Portuguese)

  • Gomes RAT, Guimarães RF, Carvalho AO Jr, Fernandes NF, Vargas EA Jr, Martins EA (2008b) Identification of the affected areas by mass movement through a physically based model of landslide hazard combined with an empirical model of debris flow. Nat Hazards 45:197–209. https://doi.org/10.1007/s11069-007-9160-z

    Article  Google Scholar 

  • Gomes RAT, Guimarães RF, Carvalho AO Jr, Fernandes NF, Vargas EA Jr (2013) Combining spatial models for shallow landslides and debris-flows prediction. Remote Sens 5:2219–2237. https://doi.org/10.1007/s11069-007-9160-z

    Article  Google Scholar 

  • Graf C, Stoffel M, Grêt-Regamey A (2009) Enhancing debris flow modeling parameters integrating Bayesian networks. Geophys Res Abstr 11(10):10721–10725

    Google Scholar 

  • Gramani MF (2001) Caracterização geológica-geotécnica das corridas de detritos (“Debris Flows”) no Brasil e comparação com alguns casos internacionais. Dissertation, São Paulo University (USP) (in Portuguese)

  • Gregoretti C, Degetto M, Boreggio M (2016) GIS-based cell model for simulating debris flow runout on a fan. J Hydrol 534:326–340. https://doi.org/10.1016/j.jhydrol.2015.12.054

    Article  Google Scholar 

  • Gregoretti C, Stancanelli L, Bernard M, Degetto M, Boreggio M, Lanzoni S (2019) Relevance of erosion processes when modelling in-channel gravel debris flows for efficient hazard assessment. J Hydrol 568:575–591. https://doi.org/10.1016/j.jhydrol.2018.10.001

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112:42–66. https://doi.org/10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Hader PRP, Reis FAGV, Peixoto ASP (2021) Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil. Nat Hazards 110:1273–1304. https://doi.org/10.1007/s11069-021-04991-4

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchnison NJ (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238. https://doi.org/10.2113/gseegeosci.7.3.221

    Article  Google Scholar 

  • Hussin HY, Quan-Luna B, van Westen CJ, Christen M, Malet JP, van Asch ThWJ (2012) Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps. Nat Hazard 12:3075–3090. https://doi.org/10.5194/nhess-12-3075-2012

    Article  Google Scholar 

  • Hutchinson JN (1968) Mass movement. In: Fairbridge RW (ed) Encyclopedia of geomorphology. Reinhold Book Corp, New York, pp 688–696

    Chapter  Google Scholar 

  • Hutter K, Svendsen B, Rickenmann D (1996) Debris-flow modeling: a review. Continuum Mech Thermodyn 8:1–35. https://doi.org/10.1007/BF01175749

    Article  Google Scholar 

  • IBGE - Instituto Brasileiro de Geografia e Estatística (1974) Folha de Caraguatatuba (SF-23-Y-D-VI-1), 1:50,000 scale (in Portuguese)

  • IGC-Instituto Geográfico e Cartográfico do Estado de São Paulo (1979) Topographic map** in 1: 10,000 scale

  • Innes JL (1983) Debris flows. Prog Phys Geogr 7:469–501

    Article  Google Scholar 

  • IPT-Instituto de Pesquisas Tecnológicas (1988) Estudos da instabilização de encostas da Serra do Mar na Região de Cubatão, objetivando a caracterização do fenômeno “corrida de lama” e a prevenção de seus efeitos. São Paulo, IPT report, n. 25258 (in Portuguese)

  • IPT-Instituto de Pesquisas Tecnológicas (2006) Análise do risco de processos de movimentos de massa e estudos de determinação de cota máxima de inundação para subsidiar a escolha entre as três alteranativas locacionais 3A, 4A e 4B da Unidade de Tratamento de Gás do Gasoduto Mexilhão, Caraguatatuba, SP. São Paulo, IPT report, n. 90643-205 (in Portuguese)

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296. https://doi.org/10.1029/97RG00426

    Article  Google Scholar 

  • Iverson RM (2005) Debris flow mechanics. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin, pp 105–134

    Chapter  Google Scholar 

  • Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci 25:85–138. https://doi.org/10.1146/annurev.earth.25.1.85

    Article  CAS  Google Scholar 

  • Kang S, Lee SR (2018) Debris flow susceptibility assessment based on an empirical approach in the central region of South Korea. Geomorphology 308:1–12. https://doi.org/10.1016/j.geomorph.2018.01.025

    Article  Google Scholar 

  • Kobiyama M, Goerl RF, Correa GP, Michel GP (2010) Debris flow occurrences in Rio dos Cedros, Southern Brazil: meteorological and geomorphic aspects. In: Wrachien D, Brebbia CA (eds) Monitoring, simulation, prevention and remediation of dense debris flows III. WITpress, Southampton, pp 77–88

    Chapter  Google Scholar 

  • Kobiyama M, Michel GP (2015) Bibliografia dos trabalhos de fluxos de detritos ocorridos no Brasil no período de 1949–2014: Atualização. Trabalho Técnico GPDEN, n. 02 (in Portuguese)

  • Kobiyama M, Michel GP, Goerl RF (2016) Historical views and current perspective of debris flow disaster management in Brazil. In: Aversa S, Cascini L, Picarelli L, Scavia C (eds) Landslides and engineered slopes. Experience, theory and practice. CRC Press, Boca Raton, pp 1189–1194

    Google Scholar 

  • Kobiyama M, Michel GP (2019) Debris-flow hazard investigation with Kanako-2D in a rural basin, Alto Feliz municipality (Brazil). In: 7th International conference on debris-flow hazards mitigation, golden, 2019. Proceedings… Golden, Colorado, USA, Association of Environmental and Engineering Geologists Special Publication, vol 28, pp 338–345

  • Kuhn CES, Reis FAGV, de Oliveira VG, Cabral VC, Gabelini BM, Veloso VQ (2022) Evolution of public policies on natural disasters in Brazil and worldwide. An Acad Bras Ciênc 94(4):1–20. https://doi.org/10.1590/0001-3765202220210869

    Article  Google Scholar 

  • Lacerda WA (2007) Landslide initiation in saprolite and colluvium in Southern Brazil: field and laboratory observations. Geomorphology 87(3):104–119. https://doi.org/10.1016/j.geomorph.2006.03.037

    Article  Google Scholar 

  • Lacerda WA, Silveira GC (1992) Características de resistência ao cisalhamento e de compressibilidade dos solos residuais e coluvionares da encosta do Soberbo, RJ. In: COBRAE. ABMS/ABGE, 1, Rio de Janeiro, pp 445–461 (in Portuguese)

  • Listo FDLR, Vieira BC (2015) Influência de Parâmetros Geotécnicos e Hidrológicos na Previsão de Áreas Instáveis a Escorregamentos Translacionais Rasos Utilizando o Modelo Trigrs. Rev Bras Geomorfol 16:485–500. https://doi.org/10.20502/rbg.v16i3.665. (in Portuguese)

    Article  Google Scholar 

  • Loch C (1984) A interpretação de imagens aéreas: noções básicas e algumas aplicações nos campos profissionais. Série didática. Editora da UFSC, Florianópolis (in Portuguese)

  • Lopes ESS, Riedel OS (2007) Simulação de corrida de detritos na bacia do Rio das Pedras que afetou a Refinaria Presidente Bernardes em Cubatão–SP. In: INPE ePrint: sid.inpe.br/mtcm17@80/2007/06.28.12.48 (in Portuguese)

  • Lopez MDCS, Pinaya JLD, Pereira Filho AJ, Vemado F, Reis FAGV (2023) Analysis of extreme precipitation events in the mountainous region of Rio de Janeiro, Brazil. Climate 11(3):73–15. https://doi.org/10.3390/cli11030073

    Article  Google Scholar 

  • Loup B, Egli T, Stucki M, Bartelt P, McArdell BW, Baumann R (2012) Impact pressures of hillslope debris flows. In: Congress INTERPRAEVENT, 12th, Grenoble, France, pp. 225–236

  • Liu W, Siming HE, Ouyang C (2017) Two-dimensional dynamics simulation of two-phase debris flow. Acta Geol Sin (engl Version) 91:1873–1883. https://doi.org/10.1111/1755-6724.13416

    Article  Google Scholar 

  • Marchetti DAB, Garcia GJ (1986) Princípios de fotogrametria e fotointerpretação. Nobel, São Paulo (in Portuguese)

  • Marengo JA, Camarinha PI, Alves LM, Diniz F, Betts RA (2021) Extreme rainfall and hydro-geo-meteorological disaster risk in 1.5, 2.0, and 4.0 °C global warming scenarios: an analysis for Brazil. Front Clim 3(13):610433. https://doi.org/10.3389/fclim.2021.610433

    Article  Google Scholar 

  • Massad F (2002) Corridas de massas geradas por escorregamentos de terra: relação entre área deslizada e a intensidade de chuva. In: Congresso Brasileiro de Mecânica dos Solos e Geotecnia, 12, São Paulo, Brazil (in Portuguese)

  • Massad F, Cruz P, Kanji M (1997) Comparison between estimated and measured debris flow discharges and volume of sediments. In: Annals of II Pan-American symposium on landslides, Rio de Janeiro, pp 213–222

  • Mcardell BW, Cesca M, Huggel C, Scheuner Y, Graf C, Christen M (2007) Numerical Modeling of debris flow run-out in the Swiss Alps. In: GSA Denver Annual Meeting, Denver, 2007. Proceedings… Denver, USA, Geological Society of America Abstracts with Programs, v. 39

  • Michel GP, Kobiyama M (2016) Mapeamento de áreas susceptíveis a fluxos de detritos por meio de modelagem computacional. In: Ladwig NI, Schwalm H. (eds) Planejamento e gestão territorial: Hidrografia e sustentabilidade. Insular, Florianópolis, pp 71–89 (in Portuguese)

  • Mikoš M, Bezak N (2021) Debris flow modelling using RAMMS model in the alpine environment with focus on the model parameters and main characteristics. Front Earth Sci 8:605061. https://doi.org/10.3389/feart.2020.605061

    Article  Google Scholar 

  • Musumeci RE, Foti E, Rosi DL, Sanfilippo M, Stancanelli LM, Iuppa C, Sapienza V, Yang W, Cantarero M, Patanè D (2021) Debris-flow hazard assessment at the archaeological UNESCO world heritage site of Villa Romana del Casale (Sicily, Italy). Int J Disaster Risk Reduct 64:102509. https://doi.org/10.1016/j.ijdrr.2021.102509

    Article  Google Scholar 

  • Nakatani K, Satofuka Y, Mizuyama T (2007) Development of ‘KANAKO’, a wide use debris flow simulator equipped with GUI. In: Congress of 32nd IAHR, Venice, 2007. Proceedings… Venice, Italy, 10 p., A2, c-182.

  • Nam DH, Kim MI, Kang DH, Kim BS (2019) Debris flow damage assessment by considering debris flow direction and direction angle of structure in South Korea. Water 11(2):328. https://doi.org/10.3390/w11020328

    Article  Google Scholar 

  • Nery TD (2016) Dinâmica das corridas de detritos no Litoral Norte de São Paulo. Ph.D. Thesis, Geography, São Paulo University (USP) (in Portuguese)

  • Nettleton IM, Martin S, Hencher S, Moore R (2005) Debris flow types and mechanisms. In: Winter MG, Macgregor F, Shackman L (eds) Scottish road network landslides study. The Scottish Executive, Edinburgh, pp 45–67

    Google Scholar 

  • O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119(2):244–261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)

    Article  Google Scholar 

  • Olsen MJ, Stuedlein AW (2010) Discussion of Use of terrestrial laser scanning for the characterization of retrogressive landslides in sensitive clay and rotational landslides in river banks’’. Can Geotech J 47:1164–1168. https://doi.org/10.1139/T10-067

    Article  Google Scholar 

  • Oriandra RD, Kusuma MSB, Farid M, Nugroho EO, Soekarno I, Andrean R (2024) Risk analysis of debris and non-debris flow in the Cisokan river flood event. In: E3S web of conferences, vol 479, p 03004. https://doi.org/10.1051/e3sconf/202447903004

  • Pachauri AK, Pant M (1992) Landslide hazard map** based on geological attributes. Eng Geol 32:81–100. https://doi.org/10.1016/0013-7952(92)90020-Y

    Article  Google Scholar 

  • Paixão MA, Kobiyama M, Fujita M, Nakatani K (2021) Sensitivity analysis of debris flow simulations using Kanako-2D. Inte J Eros Control Eng 14(1):111. https://doi.org/10.13101/ijece.14.1

    Article  Google Scholar 

  • Pelizoni AB (2014) Análise de fluxos de detritos na região serrana fluminense. Dissertation, Federal University of Rio de Janeiro (UFRJ) (in Portuguese)

  • Pereira Filho AJ, Vemado F, Vemado G, Reis FAGV, Giordano LC, Cerri RI, Santos CC, Lopes ESS, Gramani MF, Ogura AT, Zaine JE, Cerri LES, Augusto Filho O, D’Affonseca FM, Amaral CS (2018) A step towards integrating CMORPH precipitation estimation with rain Gauge measurements. Adv Meteorol 2018:1–24. https://doi.org/10.1155/2018/2095304

    Article  Google Scholar 

  • Petri S, Suguio K (1971) Características granulométricas dos materiais de escorregamentos de Caraguatatuba, São Paulo, como subsídio para o estudo da sedimentação Neocenozóica do Sudeste Brasilieiro. In: Congresso da Sociedade Brasileira de Geologia, 25, São Paulo, Brazil (in Portuguese)

  • Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Philos Trans R Soc a: Math Phys Eng Sci 363:1573–1601. https://doi.org/10.1098/rsta.2005.1596

    Article  Google Scholar 

  • Polanco LSE (2010) Correlações empíricas para fluxo de detritos. Dissertation, Federal University of Rio de Janeiro (UFRJ) (in Portuguese)

  • Prado J, Hirai RY (2011) Checklist das Licófitas e Samambaias do Estado de São Paulo, Brasil. Biota Neotropica, 11:161–190 (in Portuguese). https://doi.org/10.1590/S1676-06032011000500012

  • Preuth T, Bartelt P, Korup O, McArdell BW (2010) A random kinetic energy model for rock avalanches: eight case studies. J Geophys Res 115:F03036. https://doi.org/10.1029/2009JF001640

    Article  Google Scholar 

  • Pudasaini SP (2012) A general two-phase debris flow model. J Geophys Res 117:F03010. https://doi.org/10.1029/2011JF002186

    Article  Google Scholar 

  • Pudasaini SP, Wang Y, Hutter K (2005) Modelling debris flows down general channels. Nat Hazards Earth Syst Sci 5:799–819. https://doi.org/10.5194/nhess-5-799-2005

    Article  Google Scholar 

  • Raïmat C, Riera E, Graf C, Luis-Fonseca R, Fañanás C, Hurlimann Ziegler M (2013) Experiencia de la aplicación de RAMMS para la modelización de flujo tras la aplicación de las soluciones flexibles VX en el barranc de Portainé. In: VIII Simposio Nacional sobre Taludes y Laderas Inestables, VIII, Palma de Mallorca, Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), pp. 1131–1144.

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77. https://doi.org/10.1023/A:1008064220727

    Article  Google Scholar 

  • Rickenmann D, Laigle D, McArdell B, Hübl J (2006) Comparison of 2D debris-flow simulation models with field events. Comput Geosci 10:241–264. https://doi.org/10.1007/s10596-005-9021-3

    Article  Google Scholar 

  • Rosatti G, Begnudelli L (2013) Two-dimensional simulation of debris flows over mobile bed: enhancing the TRENT2D model by using a well-balanced generalized Roe-type solver. Comput Fluids 71:179–195. https://doi.org/10.1016/j.compfluid.2012.10.006

    Article  Google Scholar 

  • Sakai RO (2014) Estudo do impacto de Debris flows: caso da Bacia do Rio Santo Antônio em Caraguatatuba (Brasil). Dissertation, São Paulo University (USP) (in Portuguese)

  • Sakai RO, Cartacho DL, Arasaki E, Alfredini P, Pezzoli A, Sousa-Júnior WC, Rosso M, Magni L (2013) Extreme events assessment methodology coupling debris flow, flooding and tidal levels in the coastal floodplain of the São Paulo North Coast (Brazil). Int J Geosci 4:30–38

    Article  Google Scholar 

  • Salm B (1993) Flow, flow transition and runout distances of flowing avalanches. Ann Glaciol 18:221–226. https://doi.org/10.3189/S0260305500011551

    Article  Google Scholar 

  • Salm B, Burkard A, Gubler H (1990) Berechnung von Fliesslawinen: eine Anleitung für Praktiker mit Beispielen. Mitteilung 47, Eidgenössische Institut für Schnee- und Lawinenforschung SLF

  • Sant Ana WDO, Back AJ, Michel GP, Ladwig NI, De Conto D (2020) Geometrias e posicionamento espacial de antigas cicatrizes de escorregamentos em encostas nas cabeceiras do rio Mãe Luzia, Treviso: Santa Catarina, Brasil. Ciênc Nat 42:e104. https://doi.org/10.5902/2179460X41558

    Article  Google Scholar 

  • Schneider D, Bartelt P, Caplan-Auerbach J, Christen M, Huggel C, McArdell BW (2010) Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. J Geophys Res 115:F04026. https://doi.org/10.1029/2010JF001734

    Article  Google Scholar 

  • Selby MJ (1993) Hillslope: materials and process. Oxford University Press, Oxford

    Google Scholar 

  • Simoni A, Bernard M, Berti A, Boreggio M, Lanzoni S, Stancanelli L, Gregoretti C (2020) Runoff-generated debris flows: observation of initiation conditions and erosion-deposition dynamics along the channel at Cancia (eastern Italian Alps). Earth Surf Proc Land 45(14):3556–3571. https://doi.org/10.1002/esp.4981

    Article  Google Scholar 

  • Singh G, Rawat M, Pandey A (2023) Debris flow simulation and modeling of the 2021 flash flood hazard caused by a rock-ice avalanche in the Rishiganga River valley of Uttarakhand. Environ Monit Assess 195(9):1118. https://doi.org/10.1007/s10661-023-11774-w

    Article  Google Scholar 

  • Takahashi T (2009) A review of Japanese debris flow research. Int J Eros Control Eng 2:1–14. https://doi.org/10.13101/ijece.2.1

    Article  Google Scholar 

  • Takahashi T (2014) Debris flow: mechanics, prediction and countermeasures. Taylor & Francis Group, London

    Google Scholar 

  • Tobler D, Kull I, Jacquemart M, Haehlen N (2014) Hazard management in a debris flow affected area: case study from Spreitgraben, Switzerland. In: Landslide Science for a safer geoenvironment: volume 3: targeted landslides, vol 3. Springer, Berlin, pp 25–30. https://doi.org/10.1007/978-3-319-04996-0

  • Van Steijn H (1996) Debris-flow magnitude-frequency relationships for mountainous regions of Central and Northwest Europe. Geomorphology 15:259–273. https://doi.org/10.1016/0169-555X(95)00074-F

    Article  Google Scholar 

  • Vandine DF (1985) Debris flows and debris torrents in the Southern Canadian Codillera. Can Geotech J 22:44–68. https://doi.org/10.1139/t85-006

    Article  Google Scholar 

  • Veloso VQ, Reis FAVG, Cabral V, Zaine JE, Santos Corrêa CV, Gramani MF, Kuhn CE (2023) Hazard assessment of debris-flow-prone watersheds in Cubatão, São Paulo State, Brazil. Nat Hazards 116:1–20. https://doi.org/10.1007/s11069-022-05800-2

    Article  Google Scholar 

  • Wada T, Satofuka Y, Mizuyama T (2008) Integration of 1-and 2-dimensional models for debris flow simulation. J Jpn Soc Eros Control Eng 61(2):36–40. https://doi.org/10.11475/sabo.61.2_36

    Article  Google Scholar 

  • Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52(3):522–555. https://doi.org/10.1002/2014rg000464

    Article  Google Scholar 

  • Willneff J, Poon J (2006) Georeferencing from orthorectified and non-orthorectified highresolution satellite imagery. CRC for Spatial Information, University of Melbourne https://pdfs.semanticscholar.org/3269/cb6ddfba20c6414651e95c49ce7e2a6ee643.pdf. Accessed 03 April 2023

  • Wolle CM, Hachich W (1989) Rain-induced landslides in Southern Brazil. In: Proceedings of the 12th international conference on soil mechanics and foundation engineering, Rio de Janeiro, Brazil, pp 1639–1642

  • Wu Y-H, Liu K-F, Chen Y-C (2012) Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study. J Mt Sci 10:293–304. https://doi.org/10.1007/s11629-013-2511-1

    Article  Google Scholar 

  • Yılmaz K, Dinçer AE, Kalpakcı V, Öztürk Ş (2023) Debris flow modelling and hazard assessment for a glacier area: a case study in Barsem, Tajikistan. Nat Hazards 115(3):2577–2601. https://doi.org/10.1007/s11069-022-05654-8

    Article  Google Scholar 

Download references

Acknowledgements

We thank the PETROBRAS (“Santos Project—Santos Basin Environmental Characterization”, coordinated by PETROBRAS/CENPES) for scientific support and ANP (National Agency for Petroleum, Natural Gas and Biofuels, Brazil), associated with the investment of resources arising from the Clauses of PD&I. We also thank the National Council for Scientific and Technological Development (CNPq, Brazil 316574/2021-0 to F.A.G.V.R.) and PROPe—Dean of Research at UNESP (São Paulo State University, Public notice 13/2022 to C.V.S.C.) for financial support and the Center of Applied Natural Sciences, UNESPetro, of the Institute of Geosciences and Exact Sciences—IGCE (São Paulo State University—UNESP, Rio Claro) for providing laboratory facilities. Finally, we thank the Department of Geosciences (University of Tübingen/Germany) for technical and scientific support.

Funding

This work was supported by National Council for Scientific and Technological Development (CNPq, Brazil 316574/2021-0 to F.A.G.V.R.) and PROPe—Dean of Research at UNESP (São Paulo State University, Public notice 13/2022 to C.V.S.C.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Corrêa, C.V.S., Reis, F.A.G.V., D’Affonseca, F.M. Methodology development: Corrêa, C.V.S., Reis, F.A.G.V., D’Affonseca, F.M. Scientific review: Reis, F.A.G.V., D’Affonseca, F.M., Giordano, L.C., Veloso, V.Q., Cabral, V.C. Formal analysis: Reis, F.A.G.V., D’Affonseca, F.M. Writing—Original Draft, Review And Editing: Corrêa, C.V.S., Reis, F.A.G.V., D’Affonseca, F.M. Project administration and Funding acquisition: Reis, F.A.G.V.

Corresponding author

Correspondence to Claudia Vanessa dos Santos Corrêa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Corrêa, C.V., Reis, F.A.G.V., do Carmo Giordano, L. et al. Numerical modeling of a high magnitude debris-flow event occurred in Brazil. Nat Hazards (2024). https://doi.org/10.1007/s11069-024-06728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11069-024-06728-5

Keywords

Navigation