Log in

Meta-analysis of Cognitive Function Following Non-severe SARS-CoV-2 Infection

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

To effectively diagnose and treat subjective cognitive symptoms in post-acute sequalae of COVID-19 (PASC), it is important to understand objective cognitive impairment across the range of acute COVID-19 severity. Despite the importance of this area of research, to our knowledge, there are no current meta-analyses of objective cognitive functioning following non-severe initial SARS-CoV-2 infection. The aim of this meta-analysis is to describe objective cognitive impairment in individuals with non-severe (mild or moderate) SARS-CoV-2 cases in the post-acute stage of infection. This meta-analysis was pre-registered with Prospero (CRD42021293124) and utilized the PRISMA checklist for reporting guidelines, with screening conducted by at least two independent reviewers for all aspects of the screening and data extraction process. Fifty-nine articles (total participants = 22,060) with three types of study designs met our full criteria. Individuals with non-severe (mild/moderate) initial SARS-CoV-2 infection demonstrated worse objective cognitive performance compared to healthy comparison participants. However, those with mild (nonhospitalized) initial SARS-CoV-2 infections had better objective cognitive performance than those with moderate (hospitalized but not requiring ICU care) or severe (hospitalized with ICU care) initial SARS-CoV-2 infections. For studies that used normative data comparisons instead of healthy comparison participants, there was a small and nearly significant effect when compared to normative data. There were high levels of heterogeneity (88.6 to 97.3%), likely reflecting small sample sizes and variations in primary study methodology. Individuals who have recovered from non-severe cases of SARS-CoV-2 infections may be at risk for cognitive decline or impairment and may benefit from cognitive health interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Materials

The authors declare that the data supporting the findings of this study are available within the primary paper and its supplementary information files. Data extracted from individual studies will be made available from the primary author upon reasonable request.

References

  • Abramoff, B. A., Dillingham, T. R., Brown, L. A., Caldera, F., Caldwell, K. M., McLarney, M., & Pezzin, L. E. (2023). Psychological and cognitive functioning among patients receiving outpatient rehabilitation for post-COVID sequelae: An observational study. Archives of Physical Medicine and Rehabilitation, 104(1), 11–17.

    Article  PubMed  Google Scholar 

  • Al-Aly, Z., **e, Y., & Bowe, B. (2021). High-dimensional characterization of post-acute sequelae of COVID-19. Nature, 594(7862), 259–264. https://doi.org/10.1038/s41586-021-03553-9

    Article  CAS  PubMed  Google Scholar 

  • Albu, S., Zozaya, N. R., Murillo, N., García-Molina, A., Chacón, C. A. F., & Kumru, H. (2021). What’s going on following acute COVID-19? Clinical characteristics of patients in an out-patient rehabilitation program. NeuroRehabilitation, 48(4), 469–480. https://doi.org/10.3233/NRE-210025

    Article  PubMed  Google Scholar 

  • Almeria, M., Cejudo, J. C., Sotoca, J., Deus, J., & Krupinski, J. (2020). Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain, Behavior, & Immunity - Health, 9, 100163. https://doi.org/10.1016/j.bbih.2020.100163

    Article  CAS  Google Scholar 

  • Amalakanti, S., Arepalli, K. V. R., & Jillella, J. P. (2021). Cognitive assessment in asymptomatic COVID-19 subjects. VirusDisease, 32(1), 146–149. https://doi.org/10.1007/s13337-021-00663-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apple, A. C., Oddi, A., Peluso, M. J., Asken, B. M., Henrich, T. J., Kelly, J. D., Pleasure, S. J., Deeks, S. G., Allen, I. E., Martin, J. N., Ndhlovu, L. C., Miller, B. L., Stephens, M. L., & Hellmuth, J. (2022). Risk factors and abnormal cerebrospinal fluid associate with cognitive symptoms after mild COVID-19. Annals of Clinical and Translational Neurology, 9(2), 221–226. https://doi.org/10.1002/acn3.51498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arashiro, T., Arima, Y., Muraoka, H., Sato, A., Oba, K., Uehara, Y., & Suzuki, M. (2023). Coronavirus disease 19 (COVID-19) vaccine effectiveness against symptomatic severe acute respiratory syndrome Coronavirus2 (SARS-CoV-2) infection during delta-dominant and omicron-dominant periods in Japan: A multicenter prospective case-control study (Factors associated with SARS-CoV-2 infection and the effectiveness ofCOVID-19 vaccines study). Clinical Infectious Diseases, 76(3), e108–e115.

    Article  CAS  PubMed  Google Scholar 

  • Ariza, M., Cano, N., Segura, B., Adan, A., Bargalló, N., Caldú, X., & Junqué, C. (2023). COVID-19 severity is related to poor executive function in people with post-COVID conditions. Journal of Neurology, 1–17.

  • Baker, J. F., Cates, M. E., & Luthin, D. R. (2017). D-cycloserine in the treatment of posttraumatic stress disorder. Mental Health Clinician, 7(2), 88–94. https://doi.org/10.9740/mhc.2017.03.088

    Article  PubMed  Google Scholar 

  • Baumeister, A., Göritz, A. S., Benoy, C., Jelinek, L., & Moritz, S. (2022). Long-COVID or long before? Neurocognitive deficits in people with COVID-19. Psychiatry Research, 317, 114822.

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker, J. H., Lin, J. J., Doernberg, M., Stone, K., Navis, A., Festa, J. R., & Wisnivesky, J. P. (2021). Assessment of cognitive function in patients after COVID-19 infection. JAMA Network Open, 4(10), e2130645. https://doi.org/10.1001/jamanetworkopen.2021.30645

    Article  PubMed  PubMed Central  Google Scholar 

  • Benros, M. E., Eaton, W. W., & Mortensen, P. B. (2014). The epidemiologic evidence linking autoimmune diseases and psychosis. Biological Psychiatry, 75(4), 300–306.

    Article  PubMed  Google Scholar 

  • Birberg Thornberg, U., Andersson, A., Lindh, M., Hellgren, L., Divanoglou, A., & Levi, R. (2022). Neurocognitive deficits in COVID-19 patients five months after discharge from hospital. NeuropsychologicalRehabilitation, 1–25.

  • Bispo, D. D. D. C., Brandao, P. R. D. P., Pereira, D. A., Maluf, F. B., Dias, B. A., Paranhos, H. R., & Descoteaux, M. (2022). Brain microstructural changes and fatigue after COVID-19. medRxiv, 2022–08.

  • Bogolepova, A. N., Osinovskaya, N. A., Kovalenko, E. A., & Makhnovich, E. (2021). Fatigue and cognitive impairment in post-COVID syndrome: Possible treatment approaches. Nevrologiya, Neiropsikhiatriya, Psikhosomatika, 13(4), 88–93.

    Article  Google Scholar 

  • Bohmwald, K., Gálvez, N. M. S., Ríos, M., & Kalergis, A. M. (2018). Neurologic alterations due to respiratory virus infections. Frontiers in Cellular Neuroscience, 12, 386. https://doi.org/10.3389/fncel.2018.00386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottemanne, H., Gouraud, C., Hulot, J.-S., Blanchard, A., Ranque, B., Lahlou-Laforêt, K., Limosin, F., Günther, S., Lebeaux, D., & Lemogne, C. (2021). Do anxiety and depression predict persistent physical symptoms after a severe COVID-19 episode? A Prospective Study. Frontiers in Psychiatry, 12, 757685. https://doi.org/10.3389/fpsyt.2021.757685

    Article  PubMed  Google Scholar 

  • Braga, L. W., Oliveira, S. B., Moreira, A. S., Pereira, M. E., Carneiro, Serio, A. S., & Souza, L. M. N. (2022). Neuropsychological manifestations of long COVID in hospitalized and non-hospitalized Brazilian Patients. NeuroRehabilitation, 50(4), 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Bungenberg, J., Humkamp, K., Hohenfeld, C., Rust, M. I., Ermis, U., Dreher, M., Hartmann, N. K., Marx, G., Binkofski, F., Finke, C., Schulz, J. B., Costa, A. S., & Reetz, K. (2022). Long COVID-19: Objectifying most self-reported neurological symptoms. Annals of Clinical and Translational Neurology, 9(2), 141–154. https://doi.org/10.1002/acn3.51496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattie, J. E., Letendre, S. L., Woods, S. P., Barakat, F., Perry, W., Cherner, M., Umlauf, A., Franklin, D., Heaton, R. K., Hassanein, T., Grant, I., & Translational Methamphetamine AIDS Research Center (TMARC). (2014). Persistent neurocognitive decline in a clinic sample of hepatitis C virus-infected persons receiving interferon and ribavirin treatment. Journal of neurovirology, 20(6), 561–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, J. G., Ha, E. H., Lee, W., & Lee, S. Y. (2022). Cognitive impairments in patients with subacute coronavirus disease: Initial experiences in a post-coronavirus disease clinic. Frontiers in Aging Neuroscience14.

  • Christensen, P. A., Olsen, R. J., Long, S. W., Snehal, R., Davis, J. J., Ojeda Saavedra, M., Reppond, K., Shyer, M. N., Cambric, J., Gadd, R., Thakur, R. M., Batajoo, A., Mangham, R., Pena, S., Trinh, T., Kinskey, J. C., Williams, G., Olson, R., Gollihar, J., & Musser, J. M. (2022). Signals of significantly increased vaccine breakthrough, decreased hospitalization rates, and less severe disease in patients with coronavirus disease 2019 caused by the omicron variant of severe acute respiratory syndrome coronavirus 2 in Houston. Texas. the American Journal of Pathology, 192(4), 642–652. https://doi.org/10.1016/j.ajpath.2022.01.007

    Article  CAS  PubMed  Google Scholar 

  • Cian, V., De Laurenzis, A., Siri, C., Gusmeroli, A., & Canesi, M. (2022). Cognitive and neuropsychiatric features of COVID-19 patients after hospital dismission: An Italian Sample. Frontiers in Psychology13.

  • Cockshell, S. J., & Mathias, J. L. (2014). Cognitive functioning in people with chronic fatigue syndrome: A comparison between subjective and objective measures. Neuropsychology, 28(3), 394–405. https://doi.org/10.1037/neu0000025

    Article  PubMed  Google Scholar 

  • Cohen, J. (2013). Statistical power analysis for the behavioral sciences (0 ed.). Routledge. https://doi.org/10.4324/9780203771587

  • Crivelli, L., Calandri, I., Corvalán, N., Carello, M. A., Keller, G., Martínez, C., Arruabarrena, M., & Allegri, R. (2021). Cognitive consequences of COVID-19: Results of a cohort study from South America. Arquivos De Neuro-Psiquiatria. https://doi.org/10.1590/0004-282x-anp-2021-0320

    Article  PubMed Central  Google Scholar 

  • Crivelli, L., Palmer, K., Calandri, I., Guekht, A., Beghi, E., Carroll, W., Frontera, J., García-Azorín, D., Westenberg, E., Winkler, A. S., Mangialasche, F., Allegri, R. F., & Kivipelto, M. (2022). Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis. Alzheimer’s & Dementia : THe Journalof the Alzheimer’s Association, 18(5), 1047–1066. https://doi.org/10.1002/alz.12644

    Article  CAS  Google Scholar 

  • Crumley, J. J., Stetler, C. A., & Horhota, M. (2014). Examining the relationship between subjective and objective memory performance in older adults: A meta-analysis. Psychology and Aging, 29(2), 250–263. https://doi.org/10.1037/a0035908

    Article  PubMed  Google Scholar 

  • Cucchiara, B. L., Koralnik, I. J. (2022) UpToDate. Waltham, MA: UpToDate; [ Jul; 2022 ]. COVID-19: Neurologic complications and management of neurologic conditions.

  • Davis, H. E., McCorkell, L., Vogel, J. M., et al. (2023). Long COVID: Major findings, mechanisms and recommendations. Nature Reviews Microbiology, 21, 133–146. https://doi.org/10.1038/s41579-022-00846-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degarege, A., Naveed, Z., Kabayundo, J., & Brett-Major, D. (2022). Heterogeneity and risk of bias in studies examining risk factors for severe illness and death in COVID-19: A systematic review and meta analysis. Pathogens (basel, Switzerland), 11(5), 563. https://doi.org/10.3390/pathogens11050563

    Article  CAS  PubMed  Google Scholar 

  • De Paula, J. J., Paiva, R. E., Souza-Silva, N. G., Rosa, D. V., Duran, F. L. D. S., Coimbra, R. S., & Romano Silva, M. A. (2023). Selective visuoconstructional impairment following mild COVID-19 with inflammatory and neuroimaging correlation findings. Molecular Psychiatry, 28(2), 553. 563.

    Article  CAS  PubMed  Google Scholar 

  • Del Brutto, O. H., Rumbea, D. A., Recalde, B. Y., & Mera, R. M. (2022). Cognitive sequelae of long COVID may not be permanent: A prospective study. European Journal of Neurology, 29(4), 1218–1221. https://doi.org/10.1111/ene.15215

    Article  PubMed  Google Scholar 

  • Del Brutto, O. H., Wu, S., Mera, R. M., Costa, A. F., Recalde, B. Y., & Issa, N. P. (2021). Cognitive decline among individuals with history of mild symptomatic SARS-CoV-2 infection: A longitudinal prospective study nested to a population cohort. European Journal of Neurology, 28(10), 3245–3253. https://doi.org/10.1111/ene.14775

    Article  PubMed  PubMed Central  Google Scholar 

  • Demir, B., Beyazyüz, E., Beyazyüz, M., Çelikkol, A., & Albayrak, Y. (2022). Long-lasting cognitive effects of COVID-19: is there a role of BDNF?. European Archives of Psychiatry and Clinical Neuroscience, 1–9.

  • Douaud, G., Lee, S., Alfaro-Almagro, F., Arthofer, C., Wang, C., McCarthy, P., Lange, F., Andersson, J. L. R., Griffanti, L., Duff, E., Jbabdi, S., Taschler, B., Keating, P., Winkler, A. M., Collins, R., Matthews, P. M., Allen, N., Miller, K. L., Nichols, T. E., & Smith, S. M. (2022). SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature, 604(7907), 697–707. https://doi.org/10.1038/s41586-022-04569-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doubrovinskaia, S., Mooshage, C. M., Seliger, C., Lorenz, H. M., Nagel, S., Lehnert, P., Purrucker, J., Wildemann, B., Bendszus, M., Wick, W., Schönenberger, S., & Kaulen, L. D. (2023). Neurological autoimmune diseases following vaccinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A follow-up study. European Journal of Neurology, 30(2), 463–473. https://doi.org/10.1111/ene.15602

    Article  PubMed  Google Scholar 

  • Evans, McAuley, H., Harrison, E. M., Shikotra, A., Singapuri, A., Sereno, M., Elneima, O., Docherty, A. B., Lone, N. I., Leavy, O. C., Daines, L., Baillie, J. K., Brown, J. S., Chalder, T., De Soyza, A., Diar Bakerly, N., Easom, N., Geddes, J. R., Greening, N. J., & Brightling. (2021). Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): A UK multicentre, prospective cohort study. The Lancet. Respiratory Medicine, 9(11), 1275–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrando, S. J., Dornbush, R., Lynch, S., Shahar, S., Klepacz, L., Karmen, C. L., Chen, D., Lobo, S. A., & Lerman, D. (2022). Neuropsychological, medical, and psychiatric findings after recovery from acute COVID-19: A cross-sectional study. Journal of the Academy of Consultation-Liaison Psychiatry, S2667296022000039. https://doi.org/10.1016/j.jaclp.2022.01.003

  • Ferrucci, R., Dini, M., Groppo, E., Rosci, C., Reitano, M. R., Bai, F., Poletti, B., Brugnera, A., Silani, V., D’Arminio Monforte, A., & Priori, A. (2021). Long-lasting cognitive abnormalities after COVID-19. Brain Sciences, 11(2), 235. https://doi.org/10.3390/brainsci11020235

    Article  PubMed  PubMed Central  Google Scholar 

  • Fillmore, N. R., La, J., Zheng, C., Doron, S., Do, N., Monach, P., & Branch-Elliman, W. (2022). The COVID-19 hospitalization metric in the pre- and post-vaccination eras as a measure of pandemic severity: A retrospective, nationwide cohort study. Infection Control & Hospital Epidemiology, 1–24. https://doi.org/10.1017/ice.2022.13

  • Fitzcharles, M. A., Cohen, S. P., Clauw, Littlejohn, G., Usui, C., & Häuser, W. (2021). Nociplastic pain: towards an understanding of prevalent pain conditions. Lancet (London, England), 397(10289), 2098–2110.

    Article  PubMed  Google Scholar 

  • Fleischer, M., Köhrmann, M., Dolff, S., Szepanowski, F., Schmidt, K., Herbstreit, F., Güngör, C., Stolte, B., Steiner, K. M., Stadtler, C., Riße, J., Fiedler, M., & Meyer zu Hörste, G., Mausberg, A.-K., Kill, C., Forsting, M., Sure, U., Dittmer, U., Witzke, O., …& Stettner, M. (2021). Observational cohort study of neurological involvement among patients with SARS-CoV-2 infection. Therapeutic Advances in Neurological Disorders, 14, 175628642199370. https://doi.org/10.1177/1756286421993701

    Article  CAS  Google Scholar 

  • Franco, J. V. A., Garegnani, L. I., Metzendorf, M. I., Heldt, K., Mumm, R., & Scheidt-Nave, C. (2024). Post-covid 19 conditions in adults: Systematic review and meta-analysis of health outcomes in controlled studies. BMJ Medicine, 3(1), e000723. https://doi.org/10.1136/bmjmed-2023-000723

    Article  PubMed  PubMed Central  Google Scholar 

  • García‐Sánchez, C., Calabria, M., Grunden, N., Pons, C., Arroyo, J. A., Gómez‐Anson, B., Lleó, A., Alcolea, D., Belvís, R., Morollón, N., Mur, I., Pomar, V., & Domingo, P. (2022). Neuropsychological deficits in patients with cognitive complaints after COVID‐19. Brain and Behavior, 12(3). https://doi.org/10.1002/brb3.2508

  • Graham, E. L., Clark, J. R., Orban, Z. S., Lim, P. H., Szymanski, A. L., Taylor, C., DiBiase, R. M., Jia, D. T., Balabanov, R., Ho, S. U., Batra, A., Liotta, E. M., & Koralnik, I. J. (2021). Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers.” Annals of Clinical and Translational Neurology, 8(5), 1073–1085. https://doi.org/10.1002/acn3.51350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman-Martinez, L., Maccioni, R. B., Andrade, V., Navarrete, L. P., Pastor, M. G., & Ramos-Escobar, N. (2019). Neuroinflammation as a Common feature of neurodegenerative disorders. Frontiers in Pharmacology, 10, 1008. https://doi.org/10.3389/fphar.2019.01008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hack, L. M., Brawer, J., Chesnut, M., Zhang, X., Wintermark, M., Jiang, B., ... & Williams, L. M. (2021). Survivors of SARS-CoV-2 infection show neuropsychiatric sequelae measured by surveys, neurocognitive testing, and magnetic resonance imaging: Preliminary results. medRxiv, 2021–08.

  • Hall, P. A., Meng, G., Hudson, A., Sakib, M. N., Hitchman, S. C., & Fong, G. T. (2022). Executive dysfunction following SARS-CoV-2 infection: A cross-sectional examination in a population-representative sample. medRxiv, 2022–01.

  • Hampshire, A., Trender, W., Chamberlain, S. R., Jolly, A. E., Grant, J. E., Patrick, F., Mazibuko, N., Williams, S. C., Barnby, J. M., Hellyer, P., & Mehta, M. A. (2021). Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine, 39, 101044. https://doi.org/10.1016/j.eclinm.2021.101044

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellgren, L., Birberg Thornberg, U., Samuelsson, K., Levi, R., Divanoglou, A., & Blystad, I. (2021). Brain MRI and neuropsychological findings at long-term follow-up after COVID-19 hospitalisation: An observational cohort study. British Medical Journal Open, 11(10), e055164. https://doi.org/10.1136/bmjopen-2021-055164

    Article  Google Scholar 

  • Heming, M., Li, X., Rauber, S., Mausberg, A., Borsch, A., Hartlehnert, M., Singhal, A., Lu, I., Fleischer, M., Szepanowski, F., Witzke, O., Brenner, T., Dittmer, U., Yosef, N., Kleinschnitz, C., Wiendl, H., Stettner, M., & zu Horste, G. (2021). Neurological manifestations of COVID-19 feature T cell exhaustion and dedifferentiated monocytes in cerebrospinal fluid. IMMUNITY, 54(1), 164.

    Article  CAS  PubMed  Google Scholar 

  • Henneghan, A. M., Lewis, K. A., Gill, E., Franco-Rocha, O. Y., Vela, R. D., Medick, S., & Kesler, S. R. (2022). Describing cognitive function and psychosocial outcomes of COVID-19 survivors: A cross-sectional analysis. Journal of the American Association of Nurse Practitioners, 34(3), 499–508. https://doi.org/10.1097/JXX.0000000000000647

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirschtick, J. L., Titus, A. R., Slocum, E., Power, L. E., Hirschtick, R. E., Elliott, M. R., McKane, P., & Fleischer, N. L. (2021). Population-based estimates of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) prevalence and characteristics. Clinical Infectious Diseases, 73(11), 2055–2064. https://doi.org/10.1093/cid/ciab408

    Article  CAS  PubMed  Google Scholar 

  • Hu, F. H., Jia, Y. J., Zhao, D. Y., Fu, X. L., Zhang, W. Q., Tang, W., ... & Chen, H. L. (2023). Clinical outcomes of the severe acute respiratory syndrome coronavirus 2 Omicron and Delta variant: Systematic review and meta-analysis of 33 studies covering 6 037 144 coronavirus disease 2019–positive patients. Clinical Microbiology and Infection.

  • Johnsen, S., Sattler, S. M., Miskowiak, K. W., Kunalan, K., Victor, A., Pedersen, L., Andreassen, H. F., Jørgensen, B. J., Heebøll, H., Andersen, M. B., Marner, L., Hædersdal, C., Hansen, H., Ditlev, S. B., Porsbjerg, C., & Lapperre, T. S. (2021). Descriptive analysis of long COVID sequelae identified in a multidisciplinary clinic serving hospitalised and non-hospitalised patients. ERJ Open Research, 7(3), 00205–02021. https://doi.org/10.1183/23120541.00205-2021

    Article  PubMed  PubMed Central  Google Scholar 

  • Khanna, S. K., Khanna, N., Malav, M. K., Bayad, H. C., Sood, A., & Abraham, L. (2022). Profiling cognitive impairment in mild COVID-19 patients: A case-control study at a secondary healthcare centre in the hilly region of North India. Annals of Indian Academy of Neurology, 25(6), 1099.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirchberger, I., Peilstöcker, D., Warm, T. D., Linseisen, J., Hyhlik-Dürr, A., Meisinger, C., & Goßlau, Y. (2023). Subjective and objective cognitive impairments in non-hospitalized persons 9 months after SARS-CoV 2 Infection. Viruses, 15(1), 256.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klinkhammer, S., Horn, J., Duits, A. A., Visser-Meily, J. M. A., Verwijk, E., Slooter, A. J. C., Postma, A. A., van Heugten, C. M., & NeNeSCo Study Group. (2023). Neurological and (neuro)psychological sequelae in intensive care and general ward COVID-19 survivors. European Journal of Neurology, 30(7), 1880–1890. https://doi.org/10.1111/ene.15812

    Article  Google Scholar 

  • Knottnerus, J. A., & Tugwell, P. (2013). Heterogeneity and clinical reality. Journal of Clinical Epidemiology, 66(8), 809–811. https://doi.org/10.1016/j.jclinepi.2013.05.009

    Article  PubMed  Google Scholar 

  • Krishna, N., KP, S., & GK, R. (2023). Identifying diseases associated with Post-COVID syndrome throughan integrated network biology approach. Journal of Biomolecular Structure and Dynamics, 1–20.

  • Kumar, A. M., Ownby, R. L., Waldrop-Valverde, D., Fernandez, B., & Kumar, M. (2011). Human immunodeficiency virus infection in the CNS and decreased dopamine availability: Relationship with neuropsychological performance. Journal of Neurovirology, 17(1), 26–40. https://doi.org/10.1007/s13365010-0003-4

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Veldhuis, A., & Malhotra, T. (2021). Neuropsychiatric and cognitive sequelae of COVID-19. Frontiers in Psychology, 12, 577529. https://doi.org/10.3389/fpsyg.2021.577529

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon, H. S., & Koh, S. H. (2020). Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Translational Neurodegeneration, 9, 1–12.

    Article  Google Scholar 

  • Lamontagne, S. J., Winters, M. F., Pizzagalli, D. A., & Olmstead, M. C. (2021). Post-acute sequelae of COVID-19: Evidence of mood & cognitive impairment. Brain, Behavior, & Immunity - Health, 17, 100347. https://doi.org/10.1016/j.bbih.2021.100347

    Article  CAS  Google Scholar 

  • Lauria, A., Carfì, A., Benvenuto, F., Bramato, G., Ciciarello, F., Rocchi, S., & Bizzarro, A. (2022). Neuropsychological measures of “Long COVID-19 Fog” in older subjects. Clinics in Geriatric Medicine.

  • Li, L., Mao, S., Wang, J., Ding, X., & Zen, J. Y. (2019). Viral infection and neurological disorders—Potential role of extracellular nucleotides in neuroinflammation. ExRNA, 1(1), 26. https://doi.org/10.1186/s41544-019-0031-z

    Article  Google Scholar 

  • Liang, H., Ernst, T., Oishi, K., Ryan, M. C., Herskovits, E., Cunningham, E., & Chang, L. (2023). Abnormal brain diffusivity in participants with persistent neuropsychiatric symptoms after COVID-19. NeuroImmune Pharmacology and Therapeutics.

  • Lier, J., Stoll, K., Obrig, H., Baum, P., Deterding, L., Bernsdorff, N., ... & Saur, D. (2022). Neuropsychiatric phenotype of post COVID-19 syndrome in non-hospitalized patients. Frontiers in neurology13.

  • Liu, Y.-H., Wang, Y.-R., Wang, Q.-H., Chen, Y., Chen, X., Li, Y., Cen, Y., Xu, C., Hu, T., Liu, X.-D., Yang, L.-L., Li, S.-J., Liu, X.-F., Liu, C.-M., Zhu, J., Li, W., Zhang, L.-L., Liu, J., & Wang, Y.-J. (2021). Post-infection cognitive impairments in a cohort of elderly patients with COVID-19. Molecular Neurodegeneration, 16(1), 48. APA PsycInfo. https://doi.org/10.1186/s13024-021-00469-w

  • Liu, Y.-H., Chen, Y., Wang, Q.-H., Wang, L.-R., Jiang, L., Yang, Y., Chen, X., Li, Y., Cen, Y., Xu, C., Zhu, J., Li, W., Wang, Y.-R., Zhang, L.-L., Liu, J., Xu, Z.-Q., & Wang, Y.-J. (2022). One-Year trajectory of cognitive changes in older survivors of COVID-19 in Wuhan, China: A longitudinal cohort study. JAMA Neurology. https://doi.org/10.1001/jamaneurol.2022.0461

  • Lopez-Leon, S., Wegman-Ostrosky, T., Perelman, C., Sepulveda, R., Rebolledo, P. A., Cuapio, A., & Villapol, S. (2021). More than 50 Long-term effects of COVID-19: A systematic review and meta-analysis [Preprint]. Infectious Diseases (except HIV/AIDS). https://doi.org/10.1101/2021.01.27.21250617

  • Lu M (2023). “Computing within-study covariances, data visualization and missing data solutions for multivariate meta-analysis with metavcov.” Frontiers in Psychology, 14, 1185012. https://doi.org/10.3389/fpsyg.2023.1185012.

  • Luvizutto, G. J., Sisconetto, A. T., Appelt, P. A., Sucupira, K. S. M. B., Moura Neto, E. D., & Souza, L. A. P. S. D. (2022). Can the choice reaction time be modified after COVID-19 diagnosis? A prospective cohortstudy. Dementia & Neuropsychologia, 16, 354–360.

    Article  Google Scholar 

  • Mak, I. W. C., Chu, C. M., Pan, P. C., Yiu, M. G. C., & Chan, V. L. (2009). Long-term psychiatric morbidities among SARS survivors. General Hospital Psychiatry, 31(4), 318–326. https://doi.org/10.1016/j.genhosppsych.2009.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Manera, M. R., Fiabane, E., Pain, D., Aiello, E. N., Radici, A., Ottonello, M., & Pistarini, C. (2022). Clinical features and cognitive sequelae in COVID-19: a retrospective study on N= 152 patients. Neurological Sciences, 1–6.

  • Manukyan, P., Deviaterikova, A., Velichkovsky, B. B., & Kasatkin, V. (2022). The impact of mild COVID-19 on executive functioning and mental health outcomes in young adults. In Healthcare (Vol. 10, No. 10, p.1891). MDPI.

  • Matias-Guiu, J. A., Herrera, E., González-Nosti, M., Krishnan, K., Delgado-Alonso, C., Díez-Cirarda, M., ... & Hermann, B. P. (2023). Development of criteria for cognitive dysfunction in post-COVID syndrome: The IC-CoDi-COVID approach. Psychiatry Research319, 115006.

  • Mattioli, F., Piva, S., Stampatori, C., Righetti, F., Mega, I., Peli, E., Sala, E., Tomasi, C., Indelicato, A. M., Latronico, N., & De Palma, G. (2022). Neurologic and cognitive sequelae after SARS-CoV2 infection: Different impairment for ICU patients. Journal of the Neurological Sciences, 432, 120061. https://doi.org/10.1016/j.jns.2021.120061

    Article  CAS  PubMed  Google Scholar 

  • Mattioli, F., Stampatori, C., Righetti, F., Sala, E., Tomasi, C., & De Palma, G. (2021). Neurological and cognitive sequelae of Covid-19: A four month follow-up. Journal of Neurology, 268(12), 4422–4428. https://doi.org/10.1007/s00415-021-10579-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melkumyants, A., Buryachkovskaya, L., Lomakin, N., Antonova, O., Docenko, J., Ermishkin, V., & Serebruany, V. (2022). Effect of sulodexide on circulating blood cells in patients with mild COVID-19. Journal of Clinical Medicine, 11(7), 1995. https://doi.org/10.3390/jcm11071995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton, L., Denney, D., Lynch, S., & Parmenter, B. (2006). The relationship between perceived and objective cognitive functioning in multiple sclerosis. Archives of Clinical Neuropsychology, 21(5), 487–494. https://doi.org/10.1016/j.acn.2006.06.008

    Article  PubMed  Google Scholar 

  • Mirfazeli, F. S., Sarabi-Jamab, A., Pereira-Sanchez, V., Kordi, A., Shariati, B., Shariat, S. V., Bahrami, S., Nohesara, S., Almasi-Dooghaee, M., & Faiz, S. H. R. (2022). Chronic fatigue syndrome and cognitive deficit are associated with acute-phase neuropsychiatric manifestations of COVID-19: A 9-month follow-up study. Neurological Sciences, 43(4), 2231–2239. https://doi.org/10.1007/s10072-021-05786-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Miskowiak, K. W., Pedersen, J. K., Gunnarsson, D. V., Roikjer, T. K., Podlekareva, D., Hansen, H., ... & Johnsen, S. (2023). Cognitive impairments among patients in a long-COVID clinic: Prevalence, pattern and relation to illness severity, work function and quality of life. Journal of Affective Disorders324, 162–169.

  • Najt, P., Richards, H. L., & Fortune, D. G. (2021). Brain imaging in patients with COVID-19: A systematic review. Brain, Behavior, & Immunity - Health, 16, 100290. https://doi.org/10.1016/j.bbih.2021.100290

    Article  CAS  Google Scholar 

  • Niermeyer, M. A., & Suchy, Y. (2020). The vulnerability of executive functioning: The additive effects of recent non-restorative sleep, pain interference, and use of expressive suppression on test performance. The Clinical Neuropsychologist, 34(4), 700–719. https://doi.org/10.1080/13854046.2019.1696892

    Article  PubMed  Google Scholar 

  • O’Keefe, J. B., Minton, H. C., Morrow, M., Johnson, C., Moore, M. A., O’Keefe, G. A. D., Benameur, K., Higdon, J., & Fairley, J. K. (2021). Postacute sequelae of SARS-CoV-2 infection and impact on quality of life 1–6 months after illness and association with initial symptom severity. Open Forum Infectious Diseases, 8(8), ofab352. https://doi.org/10.1093/ofid/ofab352

  • O’Sullivan, O., Holdsworth, D. A., Ladlow, P., Barker-Davies, R. M., Chamley, R., Houston, A., & Bennett, A. N. (2023). Cardiopulmonary, functional, cognitive and mental health outcomes post-COVID-19, across the range of severity of acute illness, in a physically active, working-age population. Sports Medicine Open, 9(1), 1–14.

    Article  Google Scholar 

  • O'Connor, E., Rednam, N., OBrien, R., OBrien, S., Rock, P., Levine, A., & Zeffiro, T. A. (2022). Effects of SARS CoV-2 infection on attention, memory, and sensorimotor performance. medRxiv, 2022–09.

  • Oh, E. S., Vannorsdall, T. D., & Parker, A. M. (2021). Post-acute sequelae of SARS-CoV-2 infection and subjective memory problems. JAMA Network Open, 4(7), e2119335. https://doi.org/10.1001/jamanetworkopen.2021.19335

    Article  PubMed  PubMed Central  Google Scholar 

  • Omar, A. K. A. E., Dahesh, S. M., Ellakwa, D. E. S., Gomaa, M. K., Abdulsamad, B., Hanafy, R., & Alamrawy, R. G. (2022). Cognitive impairment in health care workers recovering from COVID-19 infection: A cross sectional comparative study. Middle East Current Psychiatry, 29(1), 79.

    Article  Google Scholar 

  • Ortelli, P., Ferrazzoli, D., Sebastianelli, L., Maestri, R., Dezi, S., Spampinato, D., Saltuari, L., Alibardi, A., Engl, M., Kofler, M., Quartarone, A., Koch, G., Oliviero, A., & Versace, V. (2022). Altered motor cortex physiology and dysexecutive syndrome in patients with fatigue and cognitive difficulties after mild COVID‐19. European Journal of Neurology, ene.15278. https://doi.org/10.1111/ene.15278

  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1016/j.ijsu.2021.105906

  • Parker, A. M., Brigham, E., Connolly, B., McPeake, J., Agranovich, A. V., Kenes, M. T., Casey, K., Reynolds, C., Schmidt, K. F. R., Kim, S. Y., Kaplin, A., Sevin, C. M., Brodsky, M. B., & Turnbull, A. E. (2021). Addressing the post-acute sequelae of SARS-CoV-2 infection: A multidisciplinary model of care. The Lancet Respiratory Medicine, 9(11), 1328–1341. https://doi.org/10.1016/S2213-2600(21)00385-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen, M., Nägele, F. L., Mayer, C., Schell, M., Petersen, E., Kühn, S., ... & Cheng, B. (2022). Brain imaging and neuropsychological assessment of individuals recovered from mild to moderate SARS-CoV-2 infection. medRxiv, 2022–07.

  • Pirker-Kees, A., Platho-Elwischger, K., Hafner, S., Redlich, K., & Baumgartner, C. (2021). Hyposmia is associated with reduced cognitive function in COVID-19: First preliminary results. Dementia and Geriatric Cognitive Disorders, 50(1), 68–73. https://doi.org/10.1159/000515575

    Article  CAS  PubMed  Google Scholar 

  • Rando, H. M., Bennett, T. D., Byrd, J. B., Bramante, C., Callahan, T. J., Chute, C. G., Davis, H. E., Deer, R., Gagnier, J., Koraishy, F. M., Liu, F., McMurry, J. A., Moffitt, R. A., Pfaff, E. R., Reese, J. T., Relevo, R., Robinson, P. N., Saltz, J. H., Solomonides, A., … & Haendel, M. A. (2021). Challenges in defining Long COVID: Striking differences across literature, Electronic Health Records, and patient-reported information [Preprint]. Infectious Diseases (except HIV/AIDS). https://doi.org/10.1101/2021.03.20.21253896

  • Rass, V., Ianosi, B.-A., Zamarian, L., Beer, R., Sahanic, S., Lindner, A., Kofler, M., Schiefecker, A. J., Mahlknecht, P., Heim, B., Limmert, V., Sonnweber, T., Pizzini, A., Tymoszuk, P., Scherfler, C., Djamshidian, A., Kiechl, S., Tancevski, I., Seppi, K., … & Helbok, R. (2021). Factors associated with impaired quality of life three months after being diagnosed with covid-19. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care & Rehabilitation, 1–14. APA PsycInfo. https://doi.org/10.1007/s11136-021-02998-9

  • Rass, V., Beer, R., Schiefecker, A. J., Lindner, A., Kofler, M., Ianosi, B. A., Mahlknecht, P., Heim, B., Peball, M., Carbone, F., Limmert, V., Kindl, P., Putnina, L., Fava, E., Sahanic, S., Sonnweber, T., Löscher, W. N., Wanschitz, J. V., Zamarian, L., … Helbok, R. (2022). Neurological outcomes 1 year after COVID‐19 diagnosis: A prospective longitudinal cohort study. European Journal of Neurology, ene.15307. https://doi.org/10.1111/ene.15307

  • Reese, J. T., Blau, H., Bergquist, T., Loomba, J. J., Callahan, T., Laraway, B., Antonescu, C., Casiraghi, E., Coleman, B., Gargano, M., Wilkins, K. J., Cappelletti, L., Fontana, T., Ammar, N., Antony, B., Murali, T. M., Karlebach, G., McMurry, J. A., Williams, A., Moffitt, R., … & RECOVER Consortium (2022). Generalizable Long COVID subtypes: Findings from the NIH N3C and RECOVER Programs. medRxiv : the preprint server for health sciences, 2022.05.24.22275398. https://doi.org/10.1101/2022.05.24.22275398

  • Renaud-Charest, O., Lui, L. M. W., Eskander, S., Ceban, F., Ho, R., Di Vincenzo, J. D., Rosenblat, J. D., Lee, Y., Subramaniapillai, M., & McIntyre, R. S. (2021). Onset and frequency of depression in post-COVID-19 syndrome: A systematic review. Journal of Psychiatric Research, 144, 129–137. https://doi.org/10.1016/j.jpsychires.2021.09.054

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodgers, M. A., & Pustejovsky, J. E. (2021). Evaluating meta-analytic methods to detect selective reporting in the presence of dependent effect sizes. Psychological Methods, 26(2), 141–160. https://doi.org/10.1037/met0000300

    Article  Google Scholar 

  • Rubega, M., Ciringione, L., Bertuccelli, M., Paramento, M., Sparacino, G., Vianello, A., ... & Del Felice, A. (2022). High-density EEG sleep correlates of cognitive and affective impairment at 12-month follow-up after COVID-19. Clinical Neurophysiology140, 126–135.

  • Santoyo-Mora, M., Villaseñor-Mora, C., Cardona-Torres, L. M., Martínez-Nolasco, J. J., Barranco-Gutiérrez, A. I., Padilla-Medina, J. A., & Bravo-Sánchez, M. G. (2022). COVID-19 long-term effects: Is there an impact on the simple reaction time and alternative-forced choice on recovered patients? BrainSciences, 12(9), 1258.

    Google Scholar 

  • Schild, A. K., Goereci, Y., Scharfenberg, D., Klein, K., Lülling, J., Meiberth, D., & Maier, F. (2023). Multidomain cognitive impairment in non-hospitalized patients with the post-COVID-19 syndrome: Results from a prospective monocentric cohort. Journal of neurology, 270(3), 1215–1223.

    Article  PubMed  Google Scholar 

  • Sera, F., Armstrong, B., Blangiardo, M., & Gasparrini, A. (2019). An extended mixed-effects framework for meta-analysis. Statistics in Medicine, 38(29), 5429–5444.

    Article  PubMed  Google Scholar 

  • Smit, D., Koerts, J., Bangma, D., F., Fuermaier, A., B. M., Tucha, L., & Tucha, O. (2021). Look who is complaining: Psychological factors predicting subjective cognitive complaints in a large community sample of older adults. Applied Neuropsychology: Adult, 1–15. https://doi.org/10.1080/23279095.2021.2007387

  • Sokouti, M., Shafiee-Kandjani, A. R., Sokouti, M., & Sokouti, B. (2023). A meta-analysis of systematic reviews and meta-analyses to evaluate the psychological consequences of COVID-19. BMC Psychology, 11(1), 279. https://doi.org/10.1186/s40359-023-01313

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommer, I. E., & Bakker, P. R. (2020). What can psychiatrists learn from SARS and MERS outbreaks? The Lancet Psychiatry, 7(7), 565–566. https://doi.org/10.1016/S2215-0366(20)30219-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Stavem, K., Einvik, G., Tholin, B., Ghanima, W., Hessen, E., & Lundqvist, C. (2022). Cognitive function in non hospitalized patients 8–13 months after acute COVID-19 infection: A cohort study in Norway. PLoS ONE, 17(8), e0273352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterne, J. A., Hernán, M. A., Reeves, B. C., Savović, J., Berkman, N. D., Viswanathan, M., Henry, D., Altman, D. G., Ansari, M. T., Boutron, I., Carpenter, J. R., Chan, A.-W., Churchill, R., Deeks, J. J., Hróbjartsson, A., Kirkham, J., Jüni, P., Loke, Y. K., Pigott, T. D., … & Higgins, J. P. (2016). ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ, i4919. https://doi.org/10.1136/bmj.i4919

  • Tabacof, L., Tosto-Mancuso, J., Wood, J., Cortes, M., Kontorovich, A., McCarthy, D., Rizk, D., Rozanski, G., Breyman, E., Nasr, L., Kellner, C., Herrera, J. E., & Putrino, D. (2021). Post-acute COVID-19 syndrome negatively impacts physical function, cognitive function, health-related quality of life and participation. American Journal of Physical Medicine & Rehabilitation. https://doi.org/10.1097/PHM.0000000000001910

    Article  Google Scholar 

  • Taquet, M., Luciano, S., Geddes, J. R., & Harrison, P. J. (2021). Bidirectional associations between COVID-19 and psychiatric disorder: Retrospective cohort studies of 62 354 COVID-19 cases in the USA. The Lancet Psychiatry, 8(2), 130–140. https://doi.org/10.1016/S2215-0366(20)30462-4

    Article  PubMed  Google Scholar 

  • Thakur, K. T., Miller, E. H., Glendinning, M. D., Al-Dalahmah, O., Banu, M. A., Boehme, A. K., Boubour, A. L., Bruce, S. S., Chong, A. M., Claassen, J., Faust, P. L., Hargus, G., Hickman, R. A., Jambawalikar, S., Khandji, A. G., Kim, C. Y., Klein, R. S., Lignelli-Dipple, A., Lin, C. C., … & Canoll, P. (2021). OVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain: A Journal of Neurology, 144(9), 2696–2708.

    Article  PubMed  Google Scholar 

  • Tohidpour, A., Morgun, A. V., Boitsova, E. B., Malinovskaya, N. A., Martynova, G. P., Khilazheva, E. D., Kopylevich, N. V., Gertsog, G. E., & Salmina, A. B. (2017). Neuroinflammation and infection: Molecular mechanisms associated with dysfunction of neurovascular unit. Frontiers in Cellular and Infection Microbiology, 7, 276. https://doi.org/10.3389/fcimb.2017.00276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Borst, B., Peters, J. B., Brink, M., Schoon, Y., Bleeker-Rovers, C. P., Schers, H., van Hees, H. W. H., van Helvoort, H., van den Boogaard, M., van der Hoeven, H., Reijers, M. H., Prokop, M., Vercoulen, J., & van den Heuvel, M. (2021). Comprehensive health assessment 3 months after recovery from acute coronavirus disease 2019 (COVID-19). Clinical Infectious Diseases, 73(5), e1089–e1098. https://doi.org/10.1093/cid/ciaa1750

    Article  CAS  PubMed  Google Scholar 

  • Vanderlind, W. M., Rabinovitz, B. B., Miao, I. Y., Oberlin, L. E., Bueno-Castellano, C., Fridman, C., Jaywant, A., & Kanellopoulos, D. (2021). A systematic review of neuropsychological and psychiatric sequalae of COVID-19: Implications for treatment. Current Opinion in Psychiatry, 34(4), 420–433. https://doi.org/10.1097/YCO.0000000000000713

    Article  PubMed  PubMed Central  Google Scholar 

  • Vannorsdall, T. D., Brigham, E., Fawzy, A., Raju, S., Gorgone, A., Pletnikova, A., Lyketsos, C. G., Parker, A. M., & Oh, E. S. (2022). Cognitive dysfunction, psychiatric distress, and functional decline after COVID-19. Journal of the Academy of Consultation-Liaison Psychiatry, 63(2), 133–143. https://doi.org/10.1016/j.jaclp.2021.10.006

    Article  PubMed  Google Scholar 

  • Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48. https://doi.org/10.18637/jss.v036.i03

  • Vitalyevna, K. Y., & Borisovna, Z. I. (2022). Cognitive functions in COVID-19 patients. international scientific solutions, 118.

  • Voruz, P., Allali, G., Benzakour, L., Nuber-Champier, A., Thomasson, M., Jacot de Alcântara, I., Pierce, J., Lalive, P. H., Lövblad, K.-O., Braillard, O., Coen, M., Serratrice, J., Pugin, J., Ptak, R., Guessous, I., Landis, B. N., Assal, F., & Péron, J. A. (2022). Long COVID neuropsychological deficits after severe, moderate, or mild infection. Clinical and Translational Neuroscience, 6(2), 9. https://doi.org/10.3390/ctn6020009

    Article  Google Scholar 

  • Wan, X., Wang, W., Liu, J., & Tong, T. (2014). Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Methodology, 14(1), 135. https://doi.org/10.1186/1471-2288-14-135

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Fang, X., Cai, Z., Wu, X., Gao, X., Min, J., & Wang, F. (2020). Comorbid chronic diseases and acute organ injuries are strongly correlated with disease severity and mortality among COVID-19 patients: A systemic review and meta-analysis. Research, 2020, 1–17. https://doi.org/10.34133/2020/2402961

  • Whiteside, D. M., Basso, M. R., Shen, C., Fry, L., Naini, S., Waldron, E. J., ... & Minor, G. N. (2024). The relationship between performance validity testing, external incentives, and cognitive functioning in long COVID. Journal of Clinical and Experimental Neuropsychology, 1–10.

  • Wild, C. J., Norton, L., Menon, D. K., Ripsman, D. A., Swartz, R. H., & Owen, A. M. (2022). Disentangling the cognitive, physical, and mental health sequelae of COVID-19. Cell Reports Medicine, 3(10), 100750.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo, M. S., Malsy, J., Pöttgen, J., Seddiq Zai, S., Ufer, F., Hadjilaou, A., Schmiedel, S., Addo, M. M., Gerloff, C., Heesen, C., Schulze Zur Wiesch, J., & Friese, M. A. (2020). Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Communications, 2(2), fcaa205. https://doi.org/10.1093/braincomms/fcaa205

  • Zhao, S., Shibata, K., Hellyer, P. J., Trender, W., Manohar, S., Hampshire, A., & Husain, M. (2022). Rapid vigilance and episodic memory decrements in COVID-19 survivors. Brain Communications, 4(1), fcab295. https://doi.org/10.1093/braincomms/fcab295

Download references

Funding

This research is supported by the Department of Veterans Affairs Office of Academic Affiliations Advanced Fellowship Program in Mental Illness Research and Treatment, the VISN 17 Center of Excellence for Research on Returning War Veterans, and the Central Texas Veterans Health Care System. Dr. Lu acknowledges the support of the Relief Funding Award from the Office of the Vice Provost for Research and Scholarship and the Office of Faculty Affairs and the Department of Public Health Sciences 2023 Copeland Foundation Project Initiative Award, University of Miami. Dr. Austin was supported by a Career Development Award (1IK2RX004764) from the VA Rehabilitation Research and Development Service. Dr. Bergman acknowledges the support for this work from the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (T32-AR07080). Dr. Lantrip acknowledges the support of the VA Clinical Science Research and Developmental Career Development Award 1 IK2 CX002101-01A2. Dr. Twamley gratefully acknowledges the support of a VA Rehabilitation Research and Development Research Career Scientist Award.

Author information

Authors and Affiliations

Authors

Contributions

Tara Austin: conceptualization, methodology, analysis, data curation, writing, project administration. Michael Thomas: methodology, analysis, writing—review and editing. Min Lu: methodology, analysis, writing—review and editing. Cooper Hodges: conceptualization, methodology, analysis, writing—original draft. Emily Darowski: conceptualization, methodology, data curation, writing—original draft. Rachel Bergmans: conceptualization, resources, writing—review and editing. Sarah Parr: analysis, data curation, writing—review and editing. Delaney Pickell: data curation, writing—review and editing. Mikayla Catazaro: data curation, writing—original draft. Crystal Lantrip: conceptualization, supervision, writing—review and editing. Elizabeth Twamley: methodology, supervision, writing—review and editing.

Corresponding author

Correspondence to Tara A. Austin.

Ethics declarations

Ethical Approval

N/A. No original data.

Competing Interests

The authors declare no competing interests.

Disclaimer

The views expressed herein are those of the authors and do not necessarily reflect the official policy or position of the Department of Veterans Affairs or the United States Government.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Austin, T.A., Thomas, M.L., Lu, M. et al. Meta-analysis of Cognitive Function Following Non-severe SARS-CoV-2 Infection. Neuropsychol Rev (2024). https://doi.org/10.1007/s11065-024-09642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11065-024-09642-6

Keywords

Navigation