Log in

Schwann Cell-Derived Exosomes Induced Axon Growth after Spinal Cord Injury by Decreasing PTP-σ Activation on CSPGs via the Rho/ROCK Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a severe neurological condition that involves a lengthy pathological process. This process leads to the upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia, which impedes repair and regeneration in the spinal cord. The role of the CSPG-specific receptor protein tyrosine phosphatase-sigma (PTP-σ) in post-SCI remains largely unexplored. Exosomes have great potential in the diagnosis, prognosis, and treatment of SCI due to their ability to easily cross the blood‒brain barrier. Schwann cell-derived exosomes (SCDEs) promote functional recovery in mice post-SCI by decreasing CSPG deposition. However, the mechanism by which SCDEs decrease CSPGs after SCI remains unknown. Herein, we observed elevated levels of PTP-σ and increased CSPG deposition during glial scar formation after SCI in vivo. After SCDEs were injected into SCI mice, CSPG deposition decreased in scar tissue at the injury site, the expression of PTP-σ increased during axonal growth around the injury site, and motor function subsequently recovered. Additionally, we demonstrated that the use of both Rho/ROCK inhibitors and SCDEs inhibited the reparative effects of SCDEs on scar tissue after SCI. In conclusion, our study revealed that treatment with SCDEs targeting the Rho/ROCK signaling pathway reduced PTP-σ activation in the CSPG post-SCI, which inhibited scar tissue formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sterner RC, Sterner RM (2022) Immune response following traumatic spinal cord injury: pathophysiology and therapies. Front Immunol 13:1084101. https://doi.org/10.3389/fimmu.2022.1084101

    Article  CAS  PubMed  Google Scholar 

  2. Fan B et al (2018) Microenvironment Imbalance of spinal cord Injury. Cell Transpl 27:853–866. https://doi.org/10.1177/0963689718755778

    Article  Google Scholar 

  3. Chen Y, Tang Y, Vogel LC, Devivo MJ (2013) Causes of spinal cord injury. Top Spinal Cord Inj Rehabil 19:1–8. https://doi.org/10.1310/sci1901-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ding WZ et al (2022) Spinal cord Injury: The Global incidence, prevalence, and disability from the global burden of Disease Study 2019. Spine 47:1532–1540. https://doi.org/10.1097/brs.0000000000004417

    Article  PubMed  PubMed Central  Google Scholar 

  5. French DD et al (2007) Health care costs for patients with chronic spinal cord injury in the veterans health administration. J Spinal Cord Med 30:477–481. https://doi.org/10.1080/10790268.2007.11754581

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG (2014) Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol 6:309–331. https://doi.org/10.2147/clep.S68889

    Article  PubMed  PubMed Central  Google Scholar 

  7. Papa S et al (2021) Functionalized nanogel for treating activated astrocytes in spinal cord injury. J Control Release 330:218–228. https://doi.org/10.1016/j.jconrel.2020.12.006

    Article  CAS  PubMed  Google Scholar 

  8. Anjum A et al (2020) Spinal cord Injury: pathophysiology, Multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 21. https://doi.org/10.3390/ijms21207533

  9. Orr MB, Gensel JC (2018) Spinal cord Injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics 15:541–553. https://doi.org/10.1007/s13311-018-0631-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dyck SM, Karimi-Abdolrezaee S (2015) Chondroitin sulfate proteoglycans: key modulators in the develo** and pathologic central nervous system. Exp Neurol 269:169–187. https://doi.org/10.1016/j.expneurol.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  11. Milton AJ et al (2023) Recovery of Forearm and fine digit function after chronic spinal cord Injury by Simultaneous Blockade of Inhibitory Matrix Chondroitin Sulfate Proteoglycan Production and the receptor PTPσ. J Neurotrauma 40:2500–2521. https://doi.org/10.1089/neu.2023.0117

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shen Y et al (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326:592–596. https://doi.org/10.1126/science.1178310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zuo S et al (2021) Identification of adhesion-associated DNA methylation patterns in the peripheral nervous system. Exp Ther Med 21:48. https://doi.org/10.3892/etm.2020.9479

    Article  CAS  PubMed  Google Scholar 

  14. Chen X et al (2021) Identification of anti-inflammatory vesicle-like nanoparticles in honey. J Extracell Vesicles 10:e12069. https://doi.org/10.1002/jev2.12069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo Y et al (2019) Effects of exosomes on pre-metastatic niche formation in tumors. Mol Cancer 18. https://doi.org/10.1186/s12943-019-0995-1

  16. Kim H et al (2019) Exosome-guided phenotypic switch of M1 to M2 macrophages for Cutaneous Wound Healing. Adv Sci (Weinheim Baden-Wurttemberg Germany) 6:1900513. https://doi.org/10.1002/advs.201900513

    Article  CAS  Google Scholar 

  17. Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7:a020487. https://doi.org/10.1101/cshperspect.a020487

    Article  PubMed  PubMed Central  Google Scholar 

  18. Woodhoo A et al (2007) Schwann cell precursors: a favourable cell for myelin repair in the Central Nervous System. Brain 130:2175–2185. https://doi.org/10.1093/brain/awm125

    Article  CAS  PubMed  Google Scholar 

  19. Yu T, Yang LL, Zhou Y, Wu MF, Jiao JH (2024) Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy. Stem Cell Res Ther 15:6. https://doi.org/10.1186/s13287-023-03614-y

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pan D et al (2021) Increasing toll-like receptor 2 on astrocytes induced by Schwann cell-derived exosomes promotes recovery by inhibiting CSPGs deposition after spinal cord injury. J Neuroinflammation 18:172. https://doi.org/10.1186/s12974-021-02215-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei Z et al (2019) Proteomics analysis of Schwann cell-derived exosomes: a novel therapeutic strategy for central nervous system injury. Mol Cell Biochem 457:51–59. https://doi.org/10.1007/s11010-019-03511-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bahram Sangani N, Gomes AR, Curfs LMG, Reutelingsperger CP (2021) The role of Extracellular vesicles during CNS development. Prog Neurobiol 205:102124. https://doi.org/10.1016/j.pneurobio.2021.102124

    Article  CAS  PubMed  Google Scholar 

  23. Pan D et al (2022) Autophagy induced by Schwann cell-derived exosomes promotes recovery after spinal cord injury in mouse. Biotechnol Lett 44:129–142. https://doi.org/10.1007/s10529-021-03198-8

    Article  CAS  PubMed  Google Scholar 

  24. Ren J et al (2023) Schwann cell-derived exosomes containing MFG-E8 modify macrophage/microglial polarization for attenuating inflammation via the SOCS3/STAT3 pathway after spinal cord injury. Cell Death Dis 14:70. https://doi.org/10.1038/s41419-023-05607-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu B et al (2023) Schwann Cell-Derived exosomes and Methylprednisolone Composite Patch for spinal cord Injury Repair. ACS Nano 17:22928–22943. https://doi.org/10.1021/acsnano.3c08046

    Article  CAS  PubMed  Google Scholar 

  26. Ghosh M, Pearse DD (2023) Schwann Cell-Derived Exosomal vesicles: a promising therapy for the injured spinal cord. Int J Mol Sci 24. https://doi.org/10.3390/ijms242417317

  27. Wong FC, Ye L, Demir IE, Kahlert C (2022) Schwann cell-derived exosomes: Janus-faced mediators of regeneration and disease. Glia 70:20–34. https://doi.org/10.1002/glia.24087

    Article  PubMed  Google Scholar 

  28. Watanabe K et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686. https://doi.org/10.1038/nbt1310

    Article  CAS  PubMed  Google Scholar 

  29. Watzlawick R et al (2014) Effect and reporting bias of RhoA/ROCK-blockade intervention on locomotor recovery after spinal cord injury: a systematic review and meta-analysis. JAMA Neurol 71:91–99. https://doi.org/10.1001/jamaneurol.2013.4684

    Article  PubMed  Google Scholar 

  30. Chan CC et al (2005) Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury. Exp Neurol 196:352–364. https://doi.org/10.1016/j.expneurol.2005.08.011

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y et al (2022) Rho kinase inhibitor Y27632 improves Recovery after spinal cord Injury by shifting astrocyte phenotype and morphology via the ROCK/NF-κB/C3 pathway. Neurochem Res 47:3733–3744. https://doi.org/10.1007/s11064-022-03756-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu J et al (2023) Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes. Nat Biomed Eng 7:253–269. https://doi.org/10.1038/s41551-022-00963-6

    Article  CAS  PubMed  Google Scholar 

  33. Harlow DE, Macklin WB (2014) Inhibitors of myelination: ECM changes, CSPGs and PTPs. Exp Neurol 251:39–46. https://doi.org/10.1016/j.expneurol.2013.10.017

    Article  CAS  PubMed  Google Scholar 

  34. Dyck SM et al (2015) Chondroitin sulfate proteoglycans negatively modulate spinal cord neural precursor cells by Signaling through LAR and RPTPσ and Modulation of the Rho/ROCK pathway. Stem Cells 33:2550–2563. https://doi.org/10.1002/stem.1979

    Article  CAS  PubMed  Google Scholar 

  35. Yamazaki K, Kawabori M, Seki T, Houkin K (2020) Clinical trials of stem cell treatment for spinal cord Injury. Int J Mol Sci 21. https://doi.org/10.3390/ijms21113994

  36. Hashimoto S et al (2023) Microenvironmental modulation in tandem with human stem cell transplantation enhances functional recovery after chronic complete spinal cord injury. Biomaterials 295:122002. https://doi.org/10.1016/j.biomaterials.2023.122002

    Article  CAS  PubMed  Google Scholar 

  37. Zipser CM et al (2022) Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol 21:659–670. https://doi.org/10.1016/s1474-4422(21)00464-6

    Article  PubMed  Google Scholar 

  38. Cofano F et al (2019) Mesenchymal stem cells for spinal cord Injury: current options, limitations, and future of cell therapy. Int J Mol Sci 20. https://doi.org/10.3390/ijms20112698

  39. Liu WZ, Ma ZJ, Li JR, Kang XW (2021) Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res Ther 12:102. https://doi.org/10.1186/s13287-021-02153-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40 Costăchescu B et al (2022) Novel strategies for spinal cord regeneration. Int J Mol Sci 23. https://doi.org/10.3390/ijms23094552

  41. Chan WM, Mohammed Y, Lee I, Pearse DD (2013) Effect of gender on recovery after spinal cord injury. Transl Stroke Res 4:447–461. https://doi.org/10.1007/s12975-012-0249-7

    Article  PubMed  Google Scholar 

  42. Bianco A, Antonacci Y, Liguori M (2023) Sex and gender differences in neurodegenerative diseases: challenges for Therapeutic opportunities. Int J Mol Sci 24. https://doi.org/10.3390/ijms24076354

  43. Ahmed RU et al (2023) Porcine spinal cord injury model for translational research across multiple functional systems. Exp Neurol 359:114267. https://doi.org/10.1016/j.expneurol.2022.114267

    Article  PubMed  Google Scholar 

  44. Dale K, Martí E (2017) Introduction to the special section: spinal cord a model to understand CNS development and regeneration. Dev Biol 432:1–2. https://doi.org/10.1016/j.ydbio.2017.10.005

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 82272470, 82072439]; the Tian** Health Key Discipline Special Project [grant number TJWJ2022XK011]; and the Outstanding Youth Foundation of Tian** Medical University General Hospital [grant number 22ZYYJQ01].

Author information

Authors and Affiliations

Authors

Contributions

GZN conceived and designed the research. HPM and SBZ supervised the project. HPM, SBZ and MFH conducted most experimental work. SBZ performed data analysis. HPM and SBZ wrote the manuscript. GZN reviewed and edited the manuscript.

Corresponding author

Correspondence to Guangzhi Ning.

Ethics declarations

Ethical Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Tian** Medical University General Hospital (approval number: IRB2023-DW-88).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Ma, H., Hou, M. et al. Schwann Cell-Derived Exosomes Induced Axon Growth after Spinal Cord Injury by Decreasing PTP-σ Activation on CSPGs via the Rho/ROCK Pathway. Neurochem Res 49, 2120–2130 (2024). https://doi.org/10.1007/s11064-024-04166-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-024-04166-0

Keywords

Navigation