Log in

The Role of Acetylation and Methylation of Rat Hippocampal Histone H3 in the Mechanism of Aluminum-Induced Neurotoxicity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Aluminum is a known neurotoxin and a major environmental contributor to neurodegenerative diseases such as Alzheimer’s disease (AD). We uesd a subchronic aluminum chloride exposure model in offspring rats by continuously treating them with AlCl3 solution from the date of birth until day 90 in this research. Then evaluated the neurobehavioral changes in rats, observed the ultrastructural changes of hippocampal synapses and neurons, and examined the level of hippocampal acetylated histone H3 (H3ac), the activity and protein expression of hippocampal HAT1 and G9a, and the protein expression level of H3K9 dimethylation (H3K9me2). The findings demonstrated that aluminum-treated offspring rats had impaired learning and memory abilities as well as ultrastructural alterations in hippocampal synapses and neurons. The level of histone H3ac was decreased along with decreased protein expression and activity of HAT1, while level of H3K9me2 was increased along with increased protein expression and activity of G9a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

This published article and its supplemental information file contain all data created or analyzed throughout this experiment.

References

  1. Klotz K, Weistenhöfer W, Neff F et al (2017) The Health effects of Aluminum exposure. Dtsch Arztebl Int 114(39):653–659. https://doi.org/10.3238/arztebl.2017.0653

    Article  PubMed  PubMed Central  Google Scholar 

  2. Masson JD, Angrand L, Badran G et al (2022) Clearance, biodistribution, and neuromodulatory effects of aluminum-based adjuvants. Systematic review and meta-analysis:what do we learn from animal studies? Crit Rev Toxicol 52(6):403–419. https://doi.org/10.1080/10408444.2022.2105688

    Article  CAS  PubMed  Google Scholar 

  3. Rahimzadeh MR, Rahimzadeh MR, Kazemi S et al (2022) Aluminum Poisoning with emphasis on its mechanism and treatment of intoxication. Emerg Med Int 2022:1480553. https://doi.org/10.1155/2022/1480553

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liaquat L, Sadir S, Batool Z et al (2019) Acute aluminum chloride toxicity revisited: study on DNA damage and histopathological, biochemical and neurochemical alterations in rat brain. Life Sci 217:202–211. https://doi.org/10.1016/j.lfs.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  5. Hayashi Y (2022) Molecular mechanism of hippocampal long-term potentiation-towards multiscale understanding of learning and memory. Neurosci Res 175:3–15. https://doi.org/10.1016/j.neures.2021.08.001

    Article  CAS  PubMed  Google Scholar 

  6. Liu W, Liu J, Gao J et al (2022) Effects of Subchronic Aluminum exposure on Learning, Memory, and neurotrophic factors in rats. Neurotox Res 40(6):2046–2060. https://doi.org/10.1007/s12640-022-00599-z

    Article  CAS  PubMed  Google Scholar 

  7. Fogwe LA, Reddy V, Mesfin FB, Neuroanatomy (2023) Hippocampus. StatPearls. Treasure Island (FL), vol 20. StatPearls Publishing

  8. Lin X, Amalraj M, Blanton C et al (2021) Noncanonical projections to the hippocampal CA3 regulate spatial learning and memory by modulating the feedforward hippocampal trisynaptic pathway. PLoS Biol 19(12):e3001127 Published 2021 Dec 20. https://doi.org/10.1371/journal.pbio.3001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ikram MF, Farhat SM, Mahboob A et al (2021) Expression of DnMTs and MBDs in AlCl3-Induced Neurotoxicity Mouse Model. Biol Trace Elem Res 199(9):3433–3444. https://doi.org/10.1007/s12011-020-02474-4

    Article  CAS  PubMed  Google Scholar 

  10. Wang F, Kang P, Li Z et al (2019) Role of MLL in the modification of H3K4me3 in aluminium-induced cognitive dysfunction. Chemosphere 232:121–129. https://doi.org/10.1016/j.chemosphere.2019.05.099

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Feng S, Zhang Q et al (2023) Roles of histone acetyltransferases and deacetylases in the Retinal Development and Diseases. Mol Neurobiol 60(4):2330–2354. https://doi.org/10.1007/s12035-023-03213-1

    Article  CAS  PubMed  Google Scholar 

  12. Sanaei M, Kavoosi F (2021) Histone deacetylase inhibitors, intrinsic and extrinsic apoptotic pathways, and epigenetic alterations of Histone Deacetylases (HDACs) in Hepatocellular Carcinoma. Iran J Pharm Res 20(3):324–336. https://doi.org/10.22037/ijpr.2021.115105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao J, Zhang S, Li B et al (2023) Sub-chronic aluminum exposure in rats’ learning-memory capability and hippocampal histone H4 acetylation modification: effects and mechanisms [published online ahead of print, 2023 Feb 24]. Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03602-6

    Article  PubMed  Google Scholar 

  14. Butler AA, Johnston DR, Kaur S et al (2019) Long noncoding RNA NEAT1 mediates neuronal histone methylation and age-related memory impairment. Sci Signal 12(588):eaaw9277 Published 2019 Jul 2. https://doi.org/10.1126/scisignal.aaw9277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Griñán-Ferré C, Marsal-García L, Bellver-Sanchis A et al (2019) Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-Amyloid plaques in an early-onset Alzheimer’s Disease mouse model. Aging 11(23):11591–11608. https://doi.org/10.18632/aging.102558

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jeong CH, Kwon HC, Kim DH et al (2020) Effects of Aluminum on the Integrity of the intestinal epithelium: an in Vitro and in vivo study. Environ Health Perspect 128(1):17013. https://doi.org/10.1289/ehp5701

    Article  CAS  PubMed  Google Scholar 

  17. Hosseini SM, Hejazian LB, Amani R et al (2020) Geraniol attenuates oxidative stress, bioaccumulation, serological and histopathological changes during aluminum chloride-hepatopancreatic toxicity in male Wistar rats. Environ Sci Pollut Res Int 27(16):20076–20089. https://doi.org/10.1007/s11356-020-08128-1

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen PV, Connor SA (2019) Noradrenergic regulation of Hippocampus-Dependent memory. Cent Nerv Syst Agents Med Chem 19(3):187–196. https://doi.org/10.2174/1871524919666190719163632

    Article  CAS  PubMed  Google Scholar 

  19. Joshi VV, Patel ND, Rehan MA, Kuppa A (2019) Mysterious mechanisms of memory formation: are the answers hidden in synapses? Cureus. 11(9):e5795. https://doi.org/10.7759/cureus.5795

  20. Griñán-Ferré C, Corpas R, Puigoriol-Illamola D et al (2018) Understanding epigenetics in the neurodegeneration of Alzheimer’s Disease: SAMP8 mouse model. J Alzheimers Dis 62(3):943–963. https://doi.org/10.3233/jad-170664

    Article  PubMed  PubMed Central  Google Scholar 

  21. Harman MF, Martín MG (2020) Epigenetic mechanisms related to cognitive decline during aging. J Neurosci Res 98(2):234–246. https://doi.org/10.1002/jnr.24436

    Article  CAS  PubMed  Google Scholar 

  22. Fischer A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 31(12):605–617. https://doi.org/10.1016/j.tips.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  23. Gräff J, Tsai LH (2013) The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol Toxicol 53:311–330. https://doi.org/10.1146/annurev-pharmtox-011112-140

    Article  CAS  PubMed  Google Scholar 

  24. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, Disease and inheritance. Nat Rev Genet 13(5):343–357. https://doi.org/10.1038/nrg3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peleg S, Sananbenesi F, Zovoilis A et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice [published correction appears in Science. ;328(5986):1634]. Science. 2010;328(5979):753–756. https://doi.org/10.1126/science.1186088

  26. Gräff J, Rei D, Guan JS et al (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483(7388):222–226 Published 2012 Feb 29. https://doi.org/10.1038/nature10849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chai GS, Feng Q, Wang ZH et al (2017) Downregulating ANP32A rescues synapse and memory loss via chromatin remodeling in Alzheimer model. Mol Neurodegener 12(1):34 Published 2017 May 4. https://doi.org/10.1186/s13024-017-0178-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gupta S, Kim SY, Artis S et al (2010) Histone methylation regulates memory formation. J Neurosci 30(10):3589–3599. https://doi.org/10.1523/jneurosci.3732-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kerimoglu C, Agis-Balboa RC, Kranz A et al (2013) Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice [published correction appears in J Neurosci. ;33(16):7108]. J Neurosci. 2013;33(8):3452–3464. https://doi.org/10.1523/jneurosci.3356-12. 2013

  30. Gupta-Agarwal S, Franklin AV, Deramus T et al (2012) G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J Neurosci 32(16):5440–5453. https://doi.org/10.1523/jneurosci.0147-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schaefer A, Sampath SC, Intrator A et al (2009) Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 64(5):678–691. https://doi.org/10.1016/j.neuron.2009.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng Y, Liu A, Wang ZJ et al (2019) Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer’s Disease. Brain 142(3):787–807. https://doi.org/10.1093/brain/awy354

    Article  PubMed  PubMed Central  Google Scholar 

  33. Han JLT, Pang KKL, Ang SRX et al (2021) Inhibition of lysine methyltransferase G9a/GLP reinstates long-term synaptic plasticity and synaptic tagging/capture by facilitating protein synthesis in the hippocampal CA1 area of APP/PS1 mouse model of Alzheimer’s Disease. Transl Neurodegener 10(1):23 Published 2021 Jun 29. https://doi.org/10.1186/s40035-021-00247-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Subbanna S, Joshi V, Basavarajappa BS (2018) Activity-dependent signaling and Epigenetic Abnormalities in mice exposed to postnatal ethanol. Neuroscience 392:230–240. https://doi.org/10.1016/j.neuroscience.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Xue X, Li Z et al (2020) Aluminium-induced synaptic plasticity injury via the PHF8-H3K9me2-BDNF signalling pathway. Chemosphere 244:125445. https://doi.org/10.1016/j.chemosphere.2019.125445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Lifeng Zhang for reading and editing of the manuscript thoroughly.

Funding

This study is supported by grants from National Natural Science Foundation of China (81673226); Initiated Research Foundation for the Doctoral Program of Science and Technology Department of Liaoning Province, China (201601226); Natural Science Foundation of Education Department of Liaoning Province, China (L2015544, LJKZ1146); Natural Science Foundation for Innovation and Entrepreneurship Training Program of Education Department of Liaoning Province, China (201710164000038); Natural Science Foundation of Science and Technology Department of Shenyang City, China (17-231-1-44); Natural Science Foundation of Shenyang Medical College, China (20153043); Natural Science Foundation for graduate students of Shenyang Medical College, China (Y20180512); Natural Science Foundation for undergraduate students of Shenyang Medical College, China (20179028).

Author information

Authors and Affiliations

Authors

Contributions

Author Contribution J.G, W.L and J.L designed and conducted the research; N.H and J.P performed the experiments; J.G and W.L analyzed the data and wrote the paper; J.G, W.L and L.Z reviewed and edited the manuscript. All authors edited and approved the final manuscript.

Corresponding author

Correspondence to Lifeng Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal experiments were conducted in accordance with the ethical review protocol approved in advance by Shenyang Medical College.

Consent for Publication

All authors have read and approved the manuscript for submission.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Liu, W., Liu, J. et al. The Role of Acetylation and Methylation of Rat Hippocampal Histone H3 in the Mechanism of Aluminum-Induced Neurotoxicity. Neurochem Res 49, 441–452 (2024). https://doi.org/10.1007/s11064-023-04045-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04045-0

Keywords

Navigation