Log in

Astrocytic Glutamate Transporters and Migraine

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate levels and lifetime in the brain extracellular space are dinamically regulated by a family of Na+- and K+-dependent glutamate transporters, which thereby control numerous brain functions and play a role in numerous neurological and psychiatric diseases. Migraine is a neurological disorder characterized by recurrent attacks of typically throbbing and unilateral headache and by a global dysfunction in multisensory processing. Familial hemiplegic migraine type 2 (FHM2) is a rare monogenic form of migraine with aura caused by loss-of-function mutations in the α2 Na/K ATPase (α2NKA). In the adult brain, this pump is expressed almost exclusively in astrocytes where it is colocalized with glutamate transporters. Knockin mouse models of FHM2 (FHM2 mice) show a reduced density of glutamate transporters in perisynaptic astrocytic processes (mirroring the reduced expression of α2NKA) and a reduced rate of glutamate clearance at cortical synapses during neuronal activity and sensory stimulation. Here we review the migraine-relevant alterations produced by the astrocytic glutamate transport dysfunction in FHM2 mice and their underlying mechanisms, in particular regarding the enhanced brain susceptibility to cortical spreading depression (the phenomenon that underlies migraine aura and can also initiate the headache mechanisms) and the enhanced algesic response to a migraine trigger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Notes

  1. * EAAC1, GLT1, GLAST, EAAT4-5 refer to proteins in rodents; EAAT1-5 to proteins in humans; Slc1a1, Slc1a2, Slc1a3, Slc1a6, Slc1a7 to genes in rodents; and SLC1A1, SLC1A2, SLC1A3, SLC1A6, SLC1A7 to genes in humans.

References

  1. Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17. https://doi.org/10.1038/sj.bjp.0706949

    Article  CAS  PubMed  Google Scholar 

  2. Conti F, Weinberg RJ (1999) Sha** excitation at glutamatergic synapses. Trends Neurosci 22:451–458. https://doi.org/10.1016/s0166-2236(99)01445-9

    Article  CAS  PubMed  Google Scholar 

  3. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105. https://doi.org/10.1016/s0301-0082(00)00067-8

    Article  CAS  PubMed  Google Scholar 

  4. Lauriat TL, McInnes LA (2007) EAAT2 regulation and splicing: relevance to psychiatric and neurological disorders. Mol Psychiatry 12:1065–1078. https://doi.org/10.1038/sj.mp.4002065

    Article  CAS  PubMed  Google Scholar 

  5. Maragakis NJ, Dykes-Hoberg M, Rothstein J (2004) Altered expression of the glutamate transporter EAAT2b in neurological disease. Ann Neurol 55:469–477. https://doi.org/10.1002/ana.20003

    Article  CAS  PubMed  Google Scholar 

  6. Ryan RM, Ingram SL, Scimemi A (2021) Regulation of glutamate, GABA and dopamine transporter uptake, surface mobility and expression. Front Cell Neurosci 15:670346. https://doi.org/10.3389/fncel.2021.670346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355. https://doi.org/10.1016/j.neuint.2007.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445:387–393. https://doi.org/10.1038/nature05455

    Article  CAS  PubMed  Google Scholar 

  9. Reyes N, Ginter C, Boudker O (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462:880–885. https://doi.org/10.1038/nature08616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 18:9620–9628. https://doi.org/10.1523/jneurosci.18-23-09620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637. https://doi.org/10.1038/383634a0

    Article  CAS  PubMed  Google Scholar 

  12. Picaud S, Larsson HP, Wellis DP, Lecar H, Werblin F (1995) Cone photoreceptors respond to their own glutamate release in the tiger salamander. Proc Natl Acad Sci USA 92:9417–9421. https://doi.org/10.1073/pnas.92.20.9417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wadiche JI, Arriza JL, Amara SG, Kavanaugh MP (1995) Kinetics of a human glutamate transporter. Neuron 14:1019–1027. https://doi.org/10.1016/0896-6273(95)90340-2

    Article  CAS  PubMed  Google Scholar 

  14. Eliasof S, Jahr CE (1996) Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proc Natl Acad Sci USA 93:4153–4158. https://doi.org/10.1073/pnas.93.9.4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by sha** synaptic transmission. Nat Rev Neurosci 8:935–947. https://doi.org/10.1038/nrn2274

    Article  CAS  PubMed  Google Scholar 

  16. Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757. https://doi.org/10.1523/jneurosci.18-21-08751.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leary GP, Holley DC, Stone EF, Lyda BR, Kalachev LV, Kavanaugh MP (2011) The central cavity in trimeric glutamate transporters restricts ligand diffusion. Proc Natl Acad Sci USA 108:14980–14985. https://doi.org/10.1073/pnas.1108785108

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, ** L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725. https://doi.org/10.1016/0896-6273(94)90038-8

    Article  CAS  PubMed  Google Scholar 

  19. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 18:3606–3619. https://doi.org/10.1523/jneurosci.18-10-03606.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Vivo L, Melone M, Rothstein JD, Conti F (2010) GLT-1 promoter activity in astrocytes and neurons of mouse hippocampus and somatic sensory cortex. Front Neuroanat 3:31. https://doi.org/10.3389/neuro.05.031.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992) Cloning and expression of a rat brain L-glutamate transporter. Nature 360:464–467. https://doi.org/10.1038/360464a0

    Article  CAS  PubMed  Google Scholar 

  22. Chen W, Aoki C, Mahadomrongkul V, Gruber CE, Wang GJ, Blitzblau R, Irwin N, Rosenberg PA (2002) Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J Neurosci 22:2142–2152. https://doi.org/10.1523/JNEUROSCI.22-06-02142.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holmseth S, Scott HA, Real K, Lehre KP, Leergaard TB, Bjaalie JG et al (2009) The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience 162:1055–1071. https://doi.org/10.1016/j.neuroscience.2009.03.048

    Article  CAS  PubMed  Google Scholar 

  24. Rauen T, Wiessner M, Sullivan R, Lee A, Pow DV (2004) A new GLT1 splice variant: cloning and immunolocalization of GLT1c in the mammalian retina and brain. Neurochem Int 45:1095–1106. https://doi.org/10.1016/j.neuint.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  25. Bassan M, Liu H, Madsen KL, Armsen W, Zhou J, Desilva T et al (2008) Interaction between the glutamate transporter GLT1b and the synaptic PDZ domain protein PICK1. Eur J Neurosci 27:66–82. https://doi.org/10.1111/j.1460-9568.2007.05986.x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen W, Mahadomrongkul V, Berger UV, Bassan M, DeSilva T, Tanaka K, Irwin N, Aoki C, Rosenberg PA (2004) The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J Neurosci 24:1136–1148. https://doi.org/10.1523/JNEUROSCI.1586-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmitt A, Asan E, Lesch KP, Kugler P (2002) A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience 109:45–61. https://doi.org/10.1016/s0306-4522(01)00451-1

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez-Gonzalez IM, Garcia-Tardon N, Cubelos B, Gimenez C, Zafra F (2008) The glutamate transporter GLT1b interacts with the scaffold protein PSD-95. J Neurochem 105:1834–1848. https://doi.org/10.1111/j.1471-4159.2008.05281.x

    Article  CAS  PubMed  Google Scholar 

  29. Gegelashvili G, Schousboe A (1997) High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52:6–15. https://doi.org/10.1124/mol.52.1.6

    Article  CAS  PubMed  Google Scholar 

  30. Danbolt NC, Storm-Mathisen J, Kanner BI (1992) An [Na+ + K+] coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51:295–310. https://doi.org/10.1016/0306-4522(92)90316-t

    Article  CAS  PubMed  Google Scholar 

  31. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853. https://doi.org/10.1523/JNEUROSCI.15-03-01835.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levy LM, Lehre KP, Rolstad B, Danbolt NC (1993) A monoclonal antibody raised against an [Na+ + K+] coupled L-glutamate transporter purified from rat brain confirms glial cell localization. FEBS Lett 317:79–84. https://doi.org/10.1016/0014-5793(93)81495-l

    Article  CAS  PubMed  Google Scholar 

  33. Minelli A, Barbaresi P, Reimer RJ, Edwards RH, Conti F (2001) The glial glutamate transporter GLT-1 is localized both in the vicinity of and at distance from axon terminals in the rat cerebral cortex. Neuroscience 108:51–59. https://doi.org/10.1016/s0306-4522(01)00375-x

    Article  CAS  PubMed  Google Scholar 

  34. Torp R, Danbolt NC, Babaie E, Bjoras M, Seeberg E, Storm-Mathisen J, Ottersen OP (1994) Differential expression of two glial glutamate transporters in the rat brain: an in situ hybridization study. Eur J Neurosci 6:936–942. https://doi.org/10.1111/j.1460-9568.1994.tb00587.x

    Article  CAS  PubMed  Google Scholar 

  35. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11. https://doi.org/10.1111/j.1471-4159.1984.tb09689.x

    Article  CAS  PubMed  Google Scholar 

  36. Brooks-Kayal AR, Munir M, ** H, Robinson MB (1998) The glutamate transporter, GLT-1, is expressed in cultured hippocampal neurons. Neurochem Int 33:95–100. https://doi.org/10.1016/s0197-0186(98)00018-7

    Article  CAS  PubMed  Google Scholar 

  37. Mennerick S, Dhond RP, Benz A, Xu W, Rothstein JD, Danbolt NC, Isenberg KE, Zorumski CF (1998) Neuronal expression of the glutamate transporter GLT-1 in hippocampal microcultures. J Neurosci 18:4490–4499. https://doi.org/10.1523/JNEUROSCI.18-12-04490.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Plachez C, Danbolt NC, Recasens M (2000) Transient expression of the glial glutamate transporters GLAST and GLT in hippocampal neurons in primary culture. J Neurosci Res 59:587–593. https://doi.org/10.1002/(SICI)1097-4547(20000301)59:5%3c587::AID-JNR1%3e3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  39. Rauen T, Kanner BI (1994) Localization of the glutamate transporter GLT-1 in rat and macaque monkey retinae. Neurosci Lett 169:137–140. https://doi.org/10.1016/0304-3940(94)90375-1

    Article  CAS  PubMed  Google Scholar 

  40. Schmitt A, Asan E, Püschel B, Jöns T, Kugler P (1996) Expression of the glutamate transporter GLT1 in neural cells of the rat central nervous system: non-radioactive in situ hybridization and comparative immunocytochemistry. Neuroscience 71:989–1004. https://doi.org/10.1016/0306-4522(95)00477-7

    Article  CAS  PubMed  Google Scholar 

  41. Torp R, Hoover F, Danbolt NC, Storm-Mathisen J, Ottersen OP (1997) Differential distribution of the glutamate transporters GLT1 and rEAAC1 in rat cerebral cortex and thalamus: an in situ hybridization analysis. Anat Embryol 195:317–326. https://doi.org/10.1007/s004290050051

    Article  CAS  Google Scholar 

  42. Danbolt NC, Chaudhry FA, Dehnes Y, Lehre KP, Levy LM, Ullensvang K, Storm-Mathisen J (1998) Properties and localization of glutamate transporters. Progress in Brain Research, vol 116. Elsevier, Amsterdam, pp 23–43

    Google Scholar 

  43. Reye P, Sullivan R, Fletcher EL, Pow DV (2002) Distribution of two splice variants of the glutamate transporter GLT1 in the retinas of humans, monkeys, rabbits, rats, cats, and chickens. J Comp Neurol 445:1–12. https://doi.org/10.1002/cne.10095

    Article  PubMed  Google Scholar 

  44. Sullivan R, Rauen T, Fischer F, Wiessner M, Grewer C, Bicho A, Pow DV (2004) Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: implications for CNS glutamate homeostasis. Glia 45:155–169. https://doi.org/10.1002/glia.10317

    Article  PubMed  Google Scholar 

  45. Melone M, Bellesi M, Conti F (2009) Synaptic localization of GLT- 1a in the rat somatic sensory cortex. Glia 57:108–117. https://doi.org/10.1002/glia.20744

    Article  PubMed  Google Scholar 

  46. Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, Miranda C, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki CJ, Rosenberg PA (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35:5187–5201. https://doi.org/10.1523/JNEUROSCI.4255-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichichara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702. https://doi.org/10.1126/science.276.5319.1699

    Article  CAS  PubMed  Google Scholar 

  48. Rose CR, Verkhratsky A (2016) Glial ionic excitability: the role for sodium. Glia 64:1609–1610. https://doi.org/10.1002/glia.23012

    Article  PubMed  Google Scholar 

  49. Rose CR, Verkhratsky A (2016) Principles of sodium homeostasis and sodium signalling in astroglia. Glia 64:1611–1627. https://doi.org/10.1002/glia.22964

    Article  PubMed  Google Scholar 

  50. Kirischuk S, Kettenmann H, Verkhratsky A (2007) Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells. Pflügers Arch 454:245–252. https://doi.org/10.1007/s00424-007-0207-5

    Article  CAS  PubMed  Google Scholar 

  51. Kirischuk S, Parpura V, Verkhratsky A (2012) Sodium dynamics: another key to astroglial excitability? Trends Neurosci 35:497–506. https://doi.org/10.1016/j.tins.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  52. Rose CR, Karus C (2013) Two sides of the same coin: sodium homeostasis and signaling in astrocytes under physiological and pathophysiological conditions. Glia 61:1191–1205. https://doi.org/10.1002/glia.22492

    Article  PubMed  Google Scholar 

  53. Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016

    Article  CAS  PubMed  Google Scholar 

  54. Cameron R, Klein L, Shyjan AW, Rakic P, Levenson R (1994) Neurons and astroglia express distinct subsets of Na, K-ATPase α and β subunits. Mol Brain Res 21:333–343. https://doi.org/10.1016/0169-328x(94)90264-x

    Article  CAS  PubMed  Google Scholar 

  55. Cholet N, Pellerin L, Magistretti PJ, Hamel E (2002) Similar perisynaptic glial localization for the Na+, K+-ATPase α2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb Cortex 12:515–525. https://doi.org/10.1093/cercor/12.5.515

    Article  CAS  PubMed  Google Scholar 

  56. McGrail KM, Phillips JM, Sweadner KJ (1991) Immunofluorescent localization of three Na, K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na, K-ATPase. J Neurosci 11:381–391. https://doi.org/10.1523/JNEUROSCI.11-02-00381.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Genda EN, Jackson JG, Sheldon AL, Locke SF, Greco TM, O’Donnell JC, Spruce LA, **ao R, Guo W, Putt M et al (2011) Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 31:18275–18288. https://doi.org/10.1523/JNEUROSCI.3305-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Illarionava NB, Brismar H, Aperia A, Gunnarson E (2014) Role of Na, K-ATPase α1 and α2 isoforms in the support of astrocyte glutamate uptake. PLoS One. 9:e98469. https://doi.org/10.1371/journal.pone.0098469

    Article  CAS  PubMed Central  Google Scholar 

  59. Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na K-ATPase. J Neurosci 29:81438155. https://doi.org/10.1523/JNEUROSCI.1081-09.2009

    Article  CAS  Google Scholar 

  60. Melone M, Ciriachi C, Pietrobon D, Conti F (2019) Heterogeneity of astrocytic and neuronal GLT-1 at cortical excitatory synapses, as revealed by its colocalization with Na+/K+-ATPase α isoforms. Cereb Cortex 29:3331–3350. https://doi.org/10.1093/cercor/bhy203

    Article  PubMed  Google Scholar 

  61. Soni N, Reddy BV, Kumar P (2014) GLT-1 transporter: an effective pharmacological target for various neurological disorders. Pharmacol Biochem Behav 127:70–81. https://doi.org/10.1016/j.pbb.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  62. Guillem AM, Krizman EN, Robinson MB (2022) Rapid regulation of glutamate transport: where do we go from here? Neurochem Res 47:61–84. https://doi.org/10.1007/s11064-021-03329-7

    Article  CAS  PubMed  Google Scholar 

  63. Bellesi M, Melone M, Gubbini A, Battistacci S, Conti F (2009) GLT-1 upregulation impairs prepulse inhibition of the startle reflex in adult rats. Glia 57:703–713. https://doi.org/10.1002/glia.20798

    Article  PubMed  Google Scholar 

  64. Lee S-G, Zhao-Zhong S, Emdad L, Gupta P, Sarkar D, Borjabad A, Volsky DJ, Fisher PB (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283:13116–23. https://doi.org/10.1074/jbc.M707697200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, ** L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77. https://doi.org/10.1038/nature03180. (PMID: 15635412)

    Article  CAS  PubMed  Google Scholar 

  66. Omrani A, Melone M, Bellesi M, Safiulina V, Aida T, Tanaka K, Cherubini E, Conti F (2009) Up-regulation of GLT-1 severely impairs LTD at mossy fibre–CA3 synapses. J Physiol 587:4575–4588. https://doi.org/10.1113/jphysiol.2009.177881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Melone M, Vitellaro-Zuccarello L, Vallejo-Illarramendi A, Pérez-Samartin A, Matute C, Cozzi A, Pellegrini-Giampietro DE, Rothstein JD, Conti F (2001) The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine. Mol Psychiatry 6:380–386. https://doi.org/10.1038/sj.mp.4000880

    Article  CAS  PubMed  Google Scholar 

  68. Lim G, Wang S, Mao J (2005) cAMP and protein kinase A contribute to the downregulation of spinal glutamate transporters after chronic morphine. Neurosci Lett 376:9–13. https://doi.org/10.1016/j.neulet.2004.11.016

    Article  CAS  PubMed  Google Scholar 

  69. Rozyczka J, Figiel M, Engele J (2004) Endothelins negatively regulate glial glutamate transporter expression. Brain Pathol 14:406–414. https://doi.org/10.1111/j.1750-3639.2004.tb00084.x

    Article  CAS  PubMed  Google Scholar 

  70. Burstein R, Noseda R, Borsook D (2015) Migraine: multiple processes, complex pathophysiology. J Neurosci 35:6619–6629. https://doi.org/10.1523/JNEUROSCI.0373-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S (2017) Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev 97:553–622. https://doi.org/10.1152/physrev.00034.2015

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pietrobon D, Moskowitz MA (2013) Pathophysiology of migraine. Annu Rev Physiol 75:365–391. https://doi.org/10.1146/annurev-physiol-030212-183717

    Article  CAS  PubMed  Google Scholar 

  73. Brennan KC, Pietrobon D (2018) A systems neuroscience approach to migraine. Neuron 97:1004–1021. https://doi.org/10.1016/j.neuron.2018.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. de Tommaso M, Ambrosini A, Brighina F, Coppola G, Perrotta A, Pierelli F, Sandrini G, Valeriani M, Marinazzo D, Stramaglia S, Schoenen J (2014) Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 10:144–155. https://doi.org/10.1038/nrneurol.2014.14

    Article  PubMed  Google Scholar 

  75. Ayata C, Lauritzen M (2015) Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev 95:953–993. https://doi.org/10.1152/physrev.00027.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pietrobon D, Moskowitz MA (2014) Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci 15:379–393. https://doi.org/10.1038/nrn3770

    Article  CAS  PubMed  Google Scholar 

  77. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142. https://doi.org/10.1038/nm0202-136

    Article  CAS  PubMed  Google Scholar 

  78. Melo-Carrillo A, Noseda R, Nir R-R, Schain AJ, Stratton J, Strassman AM, Burstein R (2017) Selective inhibition of trigeminovascular neurons by Ffemanezumab: a humanized monoclonal anti-CGRP antibody. J Neurosci 37:7149–7163. https://doi.org/10.1523/JNEUROSCI.0576-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang X, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R (2010) Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci 30:8807–8814. https://doi.org/10.1523/JNEUROSCI.0511-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R (2011) Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol 69:855–865. https://doi.org/10.1002/ana.22329

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhao J, Levy D (2016) Cortical spreading depression promotes persistent mechanical sensitization of intracranial meningeal afferents: implications for the intracranial mechanosensitivity of migraine. eNeuro 3(6):ENEURO.0287-16.2016. https://doi.org/10.1523/ENEURO.0287-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  82. Harriott AM, Chung DY, Uner A, Bozdayi RO, Morais A, Takizawa T, Qin T, Ayata C (2021) Optogenetic spreading depression elicits trigeminal pain and anxiety behavior. Ann Neurol 89:99–110. https://doi.org/10.1002/ana.25926

    Article  PubMed  Google Scholar 

  83. Erdener ŞE, Kaya Z, Dalkara T (2021) Parenchymal neuroinflammatory signaling and dural neurogenic inflammation in migraine. J Headache Pain 22:138. https://doi.org/10.1186/s10194-021-01353-0

    Article  PubMed  PubMed Central  Google Scholar 

  84. Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Kocak E, Sen ZD, Dalkara T (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339:1092–1095. https://doi.org/10.1126/science.1231897

    Article  CAS  PubMed  Google Scholar 

  85. Schain AJ, Melo-Carrillo A, Borsook D, Grutzendler J, Strassman AM, Burstein R (2018) Activation of pial and dural macrophages and dendritic cells by cortical spreading depression. Ann Neurol 83:508–521. https://doi.org/10.1002/ana.25169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Albrecht DS, Mainero C, Ichijo E, Ward N, Granziera C, Zürcher NR, Akeju O, Bonnier G, Price J, Hooker JM, Napadow V, Loggia ML, Hadjikhani N (2019) Imaging of neuroinflammation in migraine with aura: A [(11)C]PBR28 PET/MRI study. Neurology 92:e2038–e2050. https://doi.org/10.1212/WNL.0000000000007371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hadjikhani N, Albrecht DS (2020) Extra-axial inflammatory signal in parameninges in migraine with visual aura. Ann Neurol 87:939–949. https://doi.org/10.1002/ana.25731

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ferrari MD, Klever RR, Terwindt GM, Ayata C, van den Maagdenberg AMJM (2015) Migraine pathophysiology: lessons from mouse models and human genetics. Lancet Neurol 14:65–80. https://doi.org/10.1016/S1474-4422(14)70220-0

    Article  CAS  PubMed  Google Scholar 

  89. Sutherland HG, Griffiths LR (2017) Genetics of migraine: Insights into the molecular basis of migraine disorders. Headache 57:537–569. https://doi.org/10.1111/head.13053

    Article  PubMed  Google Scholar 

  90. Gormley P et al (2016) Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet 48:856–866. https://doi.org/10.1038/ng.3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pietrobon D (2007) Familial hemiplegic migraine. Neurotherapeutics 4:274–284. https://doi.org/10.1016/j.nurt.2007.01.008

    Article  CAS  PubMed  Google Scholar 

  92. Pietrobon D, Brennan KC (2019) Genetic mouse models of migraine. J Headache Pain 20:79. https://doi.org/10.1186/s10194-019-1029-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Russell MB, Ducros A (2011) Sporadic and familial hemiplegic migraine: pathophysiological mechanisms, clinical characteristics, diagnosis, and management. Lancet Neurol 10:457–470. https://doi.org/10.1016/S1474-4422(11)70048-5

    Article  PubMed  Google Scholar 

  94. Gormley P et al (2018) Common variant burden contributes to the familial aggregation of migraine in 1,589 families. Neuron 99:1098. https://doi.org/10.1016/j.neuron.2018.08.029

    Article  CAS  PubMed  Google Scholar 

  95. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SMG, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Hommen G-JB, Hofker MH, Ferrari MD, Frants RR (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552. https://doi.org/10.1016/s0092-8674(00)81373-2

    Article  CAS  PubMed  Google Scholar 

  96. De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L, Ballabio A, Aridon P, Casari G (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33:192–196. https://doi.org/10.1038/ng1081

    Article  CAS  PubMed  Google Scholar 

  97. Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, Ferrari MD, Herzog J, van den Maagdenberg AM, Pusch M, Strom TM (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366:371–377. https://doi.org/10.1016/S0140-6736(05)66786-4

    Article  CAS  PubMed  Google Scholar 

  98. Pietrobon D (2013) Calcium channels and migraine. Biochim Biophys Acta 1828:1655–1665. https://doi.org/10.1016/j.bbamem.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  99. Ikeda K, Onaka T, Yamakado M, Nakai J, Ishikawa TO, Taketo MM, Kawakami K (2003) Degeneration of the amygdala/piriform cortex and enhanced fear/anxiety behaviors in sodium pump alpha2 subunit (Atp1a2)-deficient mice. J Neurosci 23:4667–4676. https://doi.org/10.1523/JNEUROSCI.23-11-04667.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moseley AE, Lieske SP, Wetzel RK, James PF, He S, Shelly DA, Paul RJ, Boivin GP, Witte DP, Ramirez JM, Sweadner KJ, Lingrel JB (2003) The Na, K-ATPase alpha 2 isoform is expressed in neurons, and its absence disrupts neuronal activity in newborn mice. J Biol Chem 278:5317–5324. https://doi.org/10.1074/jbc.M211315200

    Article  CAS  PubMed  Google Scholar 

  101. Capuani C, Melone M, Tottene A, Bragina L, Crivellaro G, Santello M, Casari G, Conti F, Pietrobon D (2016) Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2. EMBO Mol Med 8:967–986. https://doi.org/10.15252/emmm.201505944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stoica A, Larsen BR, Assentoft M, Holm R, Holt LM, Vilhardt F, Vilsen B, Lykke-Hartmann K, Olsen ML, MacAulay N (2017) The alpha2beta2 isoform combination dominates the astrocytic Na+/K+-ATPase activity and is rendered nonfunctional by the alpha2.G301R familial hemiplegic migraine type 2-associated mutation. Glia 65:1777–1793. https://doi.org/10.1002/glia.23194

    Article  PubMed  Google Scholar 

  103. Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, MacAulay N (2014) Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62:608–622. https://doi.org/10.1002/glia.22629

    Article  PubMed  PubMed Central  Google Scholar 

  104. Verkhratsky A, Semyanov A (2022) The great astroglial metabolic revolution: mitochondria fuel astrocyte homeostatic support and neuroprotection. Cell Calcium 104:102583. https://doi.org/10.1016/j.ceca.2022.102583

    Article  CAS  PubMed  Google Scholar 

  105. Hedrich UBS, Liautard C, Kirschenbaum D, Pofahl M, Lavigne J, Liu Y, Theiss S, Slotta J, Escayg A, Dihné M, Beck H, Mantegazza M, Lerche H (2014) Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation. J Neurosci 34:14874–14889. https://doi.org/10.1523/JNEUROSCI.0721-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I, Takeuchi T, Itohara S, Yanagawa Y, Obata K, Furuichi T, Hensch TK, Yamakawa K (2007) Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci 27:5903–5914. https://doi.org/10.1523/JNEUROSCI.5270-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, Spain WJ, McKnight GS, Scheuer T, Catterall WA (2006) Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 9:1142–1149. https://doi.org/10.1038/nn1754

    Article  CAS  PubMed  Google Scholar 

  108. Cestèle S, Schiavon E, Rusconi R, Franceschetti S, Mantegazza M (2013) Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects. Proc Natl Acad Sci USA 110:17546–17551. https://doi.org/10.1073/pnas.1309827110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pietrobon D (2018) Ion channels in migraine disorders. Curr Opin Physiol 2:98–108. https://doi.org/10.1016/j.cophys.2018.02.001

    Article  Google Scholar 

  110. Tottene A, Fellin T, Pagnutti S, Luvisetto S, Striessnig J, Fletcher C, Pietrobon D (2002) Familial hemiplegic migraine mutations increase Ca(2+) influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons. Proc Natl Acad Sci USA 99:13284–13289. https://doi.org/10.1073/pnas.192242399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tottene A, Conti R, Fabbro A, Vecchia D, Shapovalova M, Santello M, van den Maagdenberg AMJM, Ferrari MD, Pietrobon D (2009) Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron 61:762–773. https://doi.org/10.1016/j.neuron.2009.01.027

    Article  CAS  PubMed  Google Scholar 

  112. van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, van de Ven RC, Tottene A, van der Kaa J, Plomp JJ, Frants RR, Ferrari MD (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41:701–710. https://doi.org/10.1016/s0896-6273(04)00085-6

    Article  PubMed  Google Scholar 

  113. Di Guilmi MN, Wang T, Inchauspe CG, Forsythe ID, Ferrari MD, van den Maagdenberg AM, Borst JG, Uchitel OD (2014) Synaptic gain-of-function effects of mutant Cav2.1 channels in a mouse model of familial hemiplegic migraine are due to increased basal [Ca2+]i. J Neurosci 34:7047–7058. https://doi.org/10.1523/JNEUROSCI.2526-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fioretti B, Catacuzzeno L, Sforna L, Gerke-Duncan MB, van den Maagdenberg AMJM, Franciolini F, Connor M, Pietrobon D (2011) Trigeminal ganglion neuron subtype-specific alterations of CaV2.1 calcium current and excitability in a Cacna1a mouse model of migraine. J Physiol 589:5879–5895. https://doi.org/10.1113/jphysiol.2011.220533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. van den Maagdenberg AM et al (2010) High cortical spreading depression susceptibility and migraine-associated symptoms in Ca(v)2.1 S218L mice. Ann Neurol 67:85–98. https://doi.org/10.1002/ana.21815

    Article  CAS  PubMed  Google Scholar 

  116. Marchionni I, Pilati N, Forli A, Sessolo M, Tottene A, Pietrobon D (2022) Enhanced feedback inhibition due to increased recruitment of somatostatin-expressing interneurons and enhanced cortical recurrent excitation in a genetic mouse model of migraine. J Neurosci 42:6654–6666. https://doi.org/10.1523/JNEUROSCI.0228-22.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tottene A, Favero M, Pietrobon D (2019) Enhanced thalamocortical synaptic transmission and dysregulation of the excitatory-inhibitory balance at the thalamocortical feedforward inhibitory microcircuit in a genetic mouse model of migraine. J Neurosci 39:9841–9851. https://doi.org/10.1523/JNEUROSCI.1840-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Auffenberg E et al (2021) Hyperexcitable interneurons trigger cortical spreading depression in an Scn1a migraine model. J Clin Invest 131(21):e142202. https://doi.org/10.1172/JCI142202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bøttger P, Doğanlı C, Lykke-Hartmann K (2012) Migraine- and dystonia-related disease-mutations of Na+/K+-ATPases: relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans. Neurosci Biobehav Rev 36:855–871. https://doi.org/10.1016/j.neubiorev.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  120. Bøttger P, Glerup S, Gesslein B, Illarionova NB, Isaksen TJ, Heuck A, Clausen BH, Füchtbauer E-M, Gramsbergen JB, Gunnarson E, Aperia A, Lauritzen M, Lambertsen KL, Nissen P, Lykke-Hartmann K (2016) Glutamate-system defects behind psychiatric manifestations in a familial hemiplegic migraine type 2 disease-mutation mouse model. Sci Rep 6:22047. https://doi.org/10.1038/srep22047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Leo L, Gherardini L, Barone V, De Fusco M, Pietrobon D, Pizzorusso T, Casari G (2011) Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet 7:e1002129. https://doi.org/10.1371/journal.pgen.1002129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Crivellaro G, Tottene A, Vitale M, Melone M, Casari G, Conti F, Santello M, Pietrobon D (2021) Specific activation of GluN1-N2B NMDA receptors underlies facilitation of cortical spreading depression in a genetic mouse model of migraine with reduced astrocytic glutamate clearance. Neurobiol Dis 156:105419. https://doi.org/10.1016/j.nbd.2021.105419

    Article  CAS  PubMed  Google Scholar 

  123. Parker PD, Suryavanshi P, Melone M, Sawant-Pokam PA, Reinhart KM, Kaufmann D, Theriot JJ, Pugliese A, Conti F, Shuttleworth CW, Pietrobon D, Brennan KC (2021) Non-canonical glutamate signaling in a genetic model of migraine with aura. Neuron 109:611-628.e618. https://doi.org/10.1016/j.neuron.2020.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Romanos J, Benke D, Pietrobon D, Zeilhofer HU, Santello M (2020) Astrocyte dysfunction increases cortical dendritic excitability and promotes cranial pain in familial migraine. Sci Adv 6(23):eaaz1584. https://doi.org/10.1126/sciadv.aaz1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Romanos J, Benke D, Saab AS, Zeilhofer HU, Santello M (2019) Differences in glutamate uptake between cortical regions impact neuronal NMDA receptor activation. Commun Biol 2:127. https://doi.org/10.1038/s42003-019-0367-9

    Article  PubMed  PubMed Central  Google Scholar 

  126. Scimemi A, Fine A, Kullmann DM, Rusakov DA (2004) NR2B-containing receptors mediate cross talk among hippocampal synapses. J Neurosci 24:4767–4777. https://doi.org/10.1523/JNEUROSCI.0364-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Scimemi A, Tian H, Diamond JS (2009) Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus. J Neurosci 29:14581–14595. https://doi.org/10.1523/JNEUROSCI.4845-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stroebel D, Carvalho S, Grand T, Zhu S, Paoletti P (2014) Controlling NMDA receptor subunit composition using ectopic retention signals. J Neurosci 34:16630–16636. https://doi.org/10.1523/JNEUROSCI.2736-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stroebel D, Casado M, Paoletti P (2018) Triheteromeric NMDA receptors: from structure to synaptic physiology. Curr Opin Physiol 2:1–12. https://doi.org/10.1016/j.cophys.2017.12.004

    Article  PubMed  Google Scholar 

  130. Aizawa H, Sun W, Sugiyama K, Itou Y, Aida T, Cui W, Toyoda S, Terai H, Yanagisawa M, Tanaka K (2020) Glial glutamate transporter GLT-1 determines susceptibility to spreading depression in the mouse cerebral cortex. Glia 68:2631–2642. https://doi.org/10.1002/glia.23874

    Article  PubMed  Google Scholar 

  131. Tang C, Unekawa M, Shibata M, Tomita Y, Izawa Y, Sugimoto H, Ikeda K, Kawakami K, Suzuki N, Nakahara J (2020) Characteristics of cortical spreading depression and c-Fos expression in transgenic mice having a mutation associated with familial hemiplegic migraine 2. Cephalalgia 40:1177–1190. https://doi.org/10.1177/0333102420929028

    Article  CAS  PubMed  Google Scholar 

  132. Schack VR, Holm R, Vilsen B (2012) Inhibition of phosphorylation of Na+, K+-ATPase by mutations causing familial hemiplegic migraine. J Biol Chem 287:2191–2202. https://doi.org/10.1074/jbc.M111.323022

    Article  CAS  PubMed  Google Scholar 

  133. Kros L, Lykke-Hartmann K, Khodakhah K (2018) Increased susceptibility to cortical spreading depression and epileptiform activity in a mouse model for FHM2. Sci Rep 8:16959. https://doi.org/10.1038/s41598-018-35285-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Santoro L, Manganelli F, Fortunato MR, Soldovieri MV, Ambrosino P, Iodice R, Pisciotta C, Tessa A, Santorelli F, Taglialatela M (2011) A new Italian FHM2 family: clinical aspects and functional analysis of the disease-associated mutation. Cephalalgia 31:808–819. https://doi.org/10.1177/0333102411399351

    Article  PubMed  Google Scholar 

  135. Spadaro M, Ursu S, Lehmann-Horn F, Liana V, Giovanni A, Paola G, Frontali M, Jurkat-Rott K (2004) A G301R Na+/K+-ATPase mutation causes familial hemiplegic migraine type 2 with cerebellar signs. Neurogenetics 5:177–185. https://doi.org/10.1007/s10048-004-0183-2

    Article  CAS  PubMed  Google Scholar 

  136. Gideons ES, Kavalali ET, Monteggia LM (2014) Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci USA 111:8649–8654. https://doi.org/10.1073/pnas.1323920111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. **a P, H-sV C, Zhang D, Lipton SA (2010) Memantine rreferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci 30:11246–11250. https://doi.org/10.1523/JNEUROSCI.2488-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aida T, Yoshida J, Nomura M, Tanimura A, Iino Y, Soma M, Bai N, Ito Y, Cui W, Aizawa H, Yanagisawa M, Nagai T, Takata N, Tanaka KF, Takayanagi R, Kano M, Gotz M, Hirase H, Tanaka K (2015) Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice. Neuropsychopharmacology 40:1569–1579. https://doi.org/10.1038/npp.2015.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ (2013) Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 137:232–241. https://doi.org/10.1093/brain/awt320

    Article  PubMed  Google Scholar 

  140. Thomsen LL, Kruuse C, Iversen HK, Olesen J (1994) A nitric oxide donor (nitroglycerin) triggers genuine migraine attacks. Eur J Neurol 1:73–80. https://doi.org/10.1111/j.1468-1331.1994.tb00053.x

    Article  CAS  PubMed  Google Scholar 

  141. Bates EA, Nikai T, Brennan KC, Fu YH, Charles AC, Basbaum AI, Ptacek LJ, Ahn AH (2010) Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia 30:170–178. https://doi.org/10.1111/j.1468-2982.2009.01864.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bliss TV, Collingridge GL, Kaang BK, Zhuo M (2016) Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci 17:485–496. https://doi.org/10.1038/nrn.2016.68

    Article  CAS  PubMed  Google Scholar 

  143. Tan LL, Pelzer P, Heinl C, Tang W, Gangadharan V, Flor H, Sprengel R (2017) A pathway from midcingulate cortex to posterior insula gates nociceptive hypersensitivity. Nat Neurosci 20:1591–1601. https://doi.org/10.1038/nn.4645

    Article  CAS  PubMed  Google Scholar 

  144. Afridi SK, Giffin NJ, Kaube H, Friston KJ, Ward NS, Frackowiak RS, Goadsby PJ (2005) A positron emission tomographic study in spontaneous migraine. Arch Neurol 62:1270–1275. https://doi.org/10.1001/archneur.62.8.1270

    Article  PubMed  Google Scholar 

  145. Chalifoux JR, Carter AG (2011) Glutamate spillover promotes the generation of NMDA spikes. J Neurosci 31:16435–16446. https://doi.org/10.1523/JNEUROSCI.2777-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Major G, Larkum ME, Schiller J (2013) Active properties of neocortical pyramidal neuron dendrites. Annu Rev Neurosci 36:1–24. https://doi.org/10.1146/annurev-neuro-062111-150343

    Article  CAS  PubMed  Google Scholar 

  147. Wang X-Y, Zhou H-R, Wang S, Liu C-Y, Qin G-C, Fu Q-Q, Zhou J-Y, Chen L-X (2018) NR2B-Tyr phosphorylation regulates synaptic plasticity in central sensitization in a chronic migraine rat model. J Headache Pain 19:102. https://doi.org/10.1186/s10194-018-0935-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhou X, Liang J, Wang J, Fei Z, Qin G, Zhang D, Zhou J, Chen L (2020) Up-regulation of astrocyte excitatory amino acid transporter 2 alleviates central sensitization in a rat model of chronic migraine. J Neurochem 155:370–389. https://doi.org/10.1111/jnc.14944

    Article  CAS  PubMed  Google Scholar 

  149. Manita S, Miyakawa H, Kitamura K, Murayama M (2017) Dendritic spikes in sensory perception. Front Cell Neurosci 11:29. https://doi.org/10.3389/fncel.2017.00029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Smith SL, Smith IT, Branco T, Häusser M (2013) Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature 503:115–120. https://doi.org/10.1038/nature12600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Takahashi N, Oertner TG, Hegemann P, Larkum ME (2016) Active cortical dendrites modulate perception. Science 354:1587–1590. https://doi.org/10.1126/science.aah6066

    Article  CAS  PubMed  Google Scholar 

  152. Takahashi N, Ebner C, Sigl-Glöckner J, Moberg S, Nierwetberg S, Larkum ME (2020) Active dendritic currents gate descending cortical outputs in perception. Nat Neurosci 23:1277–1285. https://doi.org/10.1038/s41593-020-0677-8

    Article  CAS  PubMed  Google Scholar 

  153. Brandalise F, Carta S, Helmchen F, Lisman J, Gerber U (2016) Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells. Nature Commun 7:13480. https://doi.org/10.1038/ncomms13480

    Article  CAS  Google Scholar 

  154. Cichon J, Gan W-B (2015) Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity. Nature 520:180–185. https://doi.org/10.1038/nature14251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gambino F, Pagès S, Kehayas V, Baptista D, Tatti R, Carleton A, Holtmaat A (2014) Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature 515:116–119. https://doi.org/10.1038/nature13664

    Article  CAS  PubMed  Google Scholar 

  156. Iure A, Mazzocchetti P, Bastioli G, Picconi B, Costa C, Marchionni I, Casari G, Tozzi A, Pietrobon D, Calabresi P (2019) Differential effect of FHM2 mutation on synaptic plasticity in distinct hippocampal regions. Cephalalgia 39:1333–1338. https://doi.org/10.1177/0333102419839967

    Article  PubMed  Google Scholar 

  157. Anttila V et al (2010) Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet 42:869–873. https://doi.org/10.1038/ng.652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to our present and past collaborators who contributed much to the studies on glutamate transporters and migraine reported here. We acknowledge the funding organizations cited in the original papers for their invaluable support.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript, and that they have no financial interests.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. The first draft of the manuscript was written by FC and DP and both authors commented on previous versions of the manuscript, read and approved the final manuscript.

Corresponding authors

Correspondence to Fiorenzo Conti or Daniela Pietrobon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, F., Pietrobon, D. Astrocytic Glutamate Transporters and Migraine. Neurochem Res 48, 1167–1179 (2023). https://doi.org/10.1007/s11064-022-03849-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03849-w

Keywords

Navigation