Log in

Vitexin Improves Cerebral ischemia‑reperfusion Injury by Attenuating Oxidative Injury and Ferroptosis via Keap1/Nrf2/HO-1signaling

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebral ischemia/reperfusion involves multiple pathological processes and ferroptosis played a crucial role in the disease progression. Nevertheless, whether Vitexin could ameliorate ischemia/reperfusion injury via meditate the ferroptosis still remains unknown. In this study, we established the oxygen-glucose deprivation and reoxygenation (OGD/R) neuron cell and middle cerebral artery occlusion/reperfusion (MCAO/R) rat model. The cell viability, cell apoptosis and reactive oxygen species (ROS) levels were tested by CCK-8 assay and Flow cytometry, respectively. Hematoxylin-eosin staining, TTC, TEM, immunofluorescence analysis and western blot were used to investigate the effects of Vitexin. The results demonstrated that Vitexin could enhanced the cell viability and decreased the cell apoptosis in OGD/R cell model. Meanwhile, incubation with Vitexin maintained the neuroprotective effects in OGD/R induced generation of lipid ROS and neuronal cell ferroptosis via regulated the expressions of Keap1/Nrf2/HO-1 relative protein levels. Moreover, treatment with Vitexin reversed brain infracted volume, the normal histopathology and mitochondrial function in MCAO/R rat model. Vitexin significantly decreased the Nrf2 transfer ration from nuclear to cytosol and regulated the expression of Keap1/Nrf2/HO-1 signaling both in vitro and in vivo. Nevertheless, the protective effects of Vitexin were blocked with the Nrf2 inhibitor ML385. Vitexin could protect the neuron cell and brain related with the Keap1/Nrf2/HO-1 signaling pathway. Vitexin was a useful candidate for stroke therapy and our research may provide an attractive therapeutic target for the treatment of stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Toman NG, Grande AW, Low WC (2019) Neural repair in stroke. Cell Transpl 28(9–10):1123–1126. https://doi.org/10.1177/0963689719863784

    Article  Google Scholar 

  2. Przykaza L (2021) Understanding the connection between common stroke comorbidities, their Associated inflammation, and the course of the cerebral Ischemia/Reperfusion Cascade. Front Immunol 12:782569. https://doi.org/10.3389/fimmu.2021.782569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amani H, Mostafavi E, Alebouyeh MR, Arzaghi H, Akbarzadeh A, Pazoki-Toroudi H, Webster TJ (2019) Would Colloidal Gold Nanocarriers Present an effective diagnosis or treatment for ischemic stroke? Int J Nanomedicine 14:8013–8031. https://doi.org/10.2147/IJN.S210035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dong R, Huang R, Shi X, Xu Z, Mang J (2021) Exploration of the mechanism of luteolin against ischemic stroke based on network pharmacology, molecular docking and experimental verification. Bioengineered 12(2):12274–12293. https://doi.org/10.1080/21655979.2021.2006966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu R, Li X, Xu P, Huang L, Cheng J, Huang X, Jiang J, Wu LJ, Tang Y (2017) TREM2 protects against cerebral ischemia/reperfusion injury. Mol Brain 10(1):20. https://doi.org/10.1186/s13041-017-0296-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qin Y, Zhang Q, Liu Y (2020) Analysis of knowledge bases and research focuses of cerebral ischemia-reperfusion from the perspective of map** knowledge domain. Brain Res Bull 156:15–24. https://doi.org/10.1016/j.brainresbull.2019.12.004

    Article  PubMed  Google Scholar 

  7. Weiss HR, Chi OZ, Kiss GK, Liu X, Damito S, Jacinto E (2018) Akt activation improves microregional oxygen supply/consumption balance after cerebral ischemia-reperfusion. Brain Res 1683:48–54. https://doi.org/10.1016/j.brainres.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  8. Zhang K, Liu Q, Luo L, Feng X, Hu Q, Fan X, Mao S (2021) Neuroprotective effect of alpha-asarone on the rats model of cerebral ischemia-reperfusion stroke via ameliorating glial activation and autophagy. Neuroscience 473:130–141. https://doi.org/10.1016/j.neuroscience.2021.08.006

    Article  CAS  PubMed  Google Scholar 

  9. Guan X, Li Z, Zhu S, Cheng M, Ju Y, Ren L, Yang G, Min D (2021) Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils. Life Sci 264:118660. https://doi.org/10.1016/j.lfs.2020.118660

    Article  CAS  PubMed  Google Scholar 

  10. Stockwell BR et al (2017) Ferroptosis: a regulated cell death Nexus linking metabolism, Redox Biology, and Disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li C et al (2021) Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharmacol Res 174:105933. https://doi.org/10.1016/j.phrs.2021.105933

    Article  CAS  PubMed  Google Scholar 

  12. Clemente LP, Rabenau M, Tang S, Stanka J, Cors E, Stroh J, Culmsee C, von Karstedt S (2020) Dynasore Blocks ferroptosis through combined modulation of Iron Uptake and Inhibition of mitochondrial respiration. Cells 9(10). https://doi.org/10.3390/cells9102259

  13. Chen G, Li C, Zhang L, Yang J, Meng H, Wan H, He Y (2022) Hydroxysafflor yellow A and anhydrosafflor yellow B alleviate ferroptosis and parthanatos in PC12 cells injured by OGD/R. Free Radic Biol Med 179:1–10. https://doi.org/10.1016/j.freeradbiomed.2021.12.262

    Article  CAS  PubMed  Google Scholar 

  14. Hu ZY, Yang ZB, Zhang R, Luo XJ, Peng J (2022) The Protective Effect of Vitexin compound B-1 on Rat Cerebral I/R Injury through a mechanism involving modulation of miR-92b/NOX4 pathway. https://doi.org/10.2174/1871527321666220324115848. CNS Neurol Disord Drug Targets

  15. Wang Y, Zhen Y, Wu X, Jiang Q, Li X, Chen Z, Zhang G, Dong L (2015) Vitexin protects brain against ischemia/reperfusion injury via modulating mitogen-activated protein kinase and apoptosis signaling in mice. Phytomedicine 22(3):379–384. https://doi.org/10.1016/j.phymed.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  16. Cui YH, Zhang XQ, Wang ND, Zheng MD, Yan J (2019) Vitexin protects against ischemia/reperfusion-induced brain endothelial permeability. Eur J Pharmacol 853:210–219. https://doi.org/10.1016/j.ejphar.2019.03.015

    Article  CAS  PubMed  Google Scholar 

  17. Min JW et al (2015) Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology 99:38–50. https://doi.org/10.1016/j.neuropharm.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  18. Luo WD, Min JW, Huang WX, Wang X, Peng YY, Han S, Yin J, Liu WH, He XH, Peng BW (2018) Vitexin reduces epilepsy after hypoxic ischemia in the neonatal brain via inhibition of NKCC1. J Neuroinflammation 15(1):186. https://doi.org/10.1186/s12974-018-1221-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ganesan K, Ramkumar KM, Xu B (2020) Vitexin restores pancreatic beta-cell function and insulin signaling through Nrf2 and NF-kappaB signaling pathways. Eur J Pharmacol 888:173606. https://doi.org/10.1016/j.ejphar.2020.173606

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, ** S, Zhang S, Li YY, Wang H, Chen Y, Lu H (2022) Vitexin protects against high glucose-induced endothelial cell apoptosis and oxidative stress via Wnt/beta-catenin and Nrf2 signalling pathway. Arch Physiol Biochem 1–10. https://doi.org/10.1080/13813455.2022.2028845

  21. Lim S, Kim TJ, Kim YJ, Kim C, Ko SB, Kim BS (2021) Senolytic therapy for cerebral ischemia-reperfusion Injury. Int J Mol Sci 22(21). https://doi.org/10.3390/ijms222111967

  22. Huang L, Zhao B, Li Q, Wu J, Jiang H, Li Q (2021) Ephedrine alleviates middle cerebral artery occlusion-induced neurological deficits and hippocampal neuronal damage in rats by activating PI3K/AKT signaling pathway. Bioengineered 12(1):4136–4149. https://doi.org/10.1080/21655979.2021.1953218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hou Y, Wang K, Wan W, Cheng Y, Pu X, Ye X (2018) Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis 5(3):245–255. https://doi.org/10.1016/j.gendis.2018.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhatt PC, Pathak S, Kumar V, Panda BP (2018) Attenuation of neurobehavioral and neurochemical abnormalities in animal model of cognitive deficits of Alzheimer’s disease by fermented soybean nanonutraceutical. Inflammopharmacology 26(1):105–118. https://doi.org/10.1007/s10787-017-0381-9

    Article  CAS  PubMed  Google Scholar 

  25. Du J, Yin G, Hu Y, Shi S, Jiang J, Song X, Zhang Z, Wei Z, Tang C, Lyu H (2020) Coicis semen protects against focal cerebral ischemia-reperfusion injury by inhibiting oxidative stress and promoting angiogenesis via the TGFbeta/ALK1/Smad1/5 signaling pathway. Aging 13(1):877–893. https://doi.org/10.18632/aging.202194

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tanaka K, Matsumoto S, Yamada T, Yamasaki R, Suzuki M, Kido MA, Kira JI (2020) Reduced post-ischemic Brain Injury in transient receptor potential vanilloid 4 knockout mice. Front Neurosci 14:453. https://doi.org/10.3389/fnins.2020.00453

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ye Y, ** T, Zhang X, Zeng Z, Ye B, Wang J, Zhong Y, **ong X, Gu L (2019) Meisoindigo protects against Focal Cerebral Ischemia-Reperfusion Injury by inhibiting NLRP3 inflammasome activation and regulating Microglia/Macrophage polarization via TLR4/NF-kappaB signaling pathway. Front Cell Neurosci 13:553. https://doi.org/10.3389/fncel.2019.00553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu K, Chen M, Zheng H, Li C, Yang F, Niu Q (2021) Pelargonidin ameliorates MCAO-induced cerebral ischemia/reperfusion injury in rats by the action on the Nrf2/HO-1 pathway. Transl Neurosci 12(1):20–31. https://doi.org/10.1515/tnsci-2021-0006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abdulai IL, Kwofie SK, Gbewonyo WS, Boison D, Puplampu JB, Adinortey MB (2021) Multitargeted Effects of Vitexin and Isovitexin on Diabetes Mellitus and its complications. https://doi.org/10.1155/2021/6641128. ScientificWorldJournal 2021:6641128

  30. Zhang C, Li S, Sun C, Liu L, Fang Y, Yang X, Pan X, Zhang B (2021) Vitexin ameliorates glycochenodeoxycholate-induced hepatocyte injury through SIRT6 and JAK2/STAT3 pathways. Iran J Basic Med Sci 24(12):1717–1725. https://doi.org/10.22038/IJBMS.2021.59424.13196

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhou P, Zheng ZH, Wan T, Wu J, Liao CW, Sun XJ (2021) Vitexin inhibits gastric Cancer Growth and Metastasis through HMGB1-mediated inactivation of the PI3K/AKT/mTOR/HIF-1alpha signaling pathway. J Gastric Cancer 21(4):439–456. https://doi.org/10.5230/jgc.2021.21.e40

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhao S, Guan X, Hou R, Zhang X, Guo F, Zhang Z, Hua C (2020) Vitexin attenuates epithelial ovarian cancer cell viability and motility in vitro and carcinogenesis in vivo via p38 and ERK1/2 pathways related VEGFA. Ann Transl Med 8(18):1139. https://doi.org/10.21037/atm-20-5586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mehta K, Bhagwat DP, Devraj P, Sehgal G, Mittal, Suchal K (2022) Vitex negundo protects against cerebral ischemia-reperfusion injury in mouse via attenuating behavioral deficits and oxidative damage. Psychopharmacology 239(2):573–587. https://doi.org/10.1007/s00213-021-06050-z

    Article  CAS  PubMed  Google Scholar 

  34. Tuo QZ et al (2022) Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal Transduct Target Ther 7(1):59. https://doi.org/10.1038/s41392-022-00917-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yuan H, Pratte J, Giardina C (2021) Ferroptosis and its potential as a therapeutic target. Biochem Pharmacol 186:114486. https://doi.org/10.1016/j.bcp.2021.114486

    Article  CAS  PubMed  Google Scholar 

  36. ** Y, Chen L, Li L, Huang G, Huang H, Tang C (2022) SNAI2 promotes the development of ovarian cancer through regulating ferroptosis. Bioengineered 13(3):6451–6463. https://doi.org/10.1080/21655979.2021.2024319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qian X, Tang J, Li L, Chen Z, Chen L, Chu Y (2021) A new ferroptosis-related gene model for prognostic prediction of papillary thyroid carcinoma. Bioengineered 12(1):2341–2351. https://doi.org/10.1080/21655979.2021.1935400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun Y et al (2020) The emerging role of ferroptosis in inflammation. Biomed Pharmacother 127:110108. https://doi.org/10.1016/j.biopha.2020.110108

    Article  CAS  PubMed  Google Scholar 

  39. Stockwell BR, Jiang X, Gu W (2020) Emerging mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol 30(6):478–490. https://doi.org/10.1016/j.tcb.2020.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Song X, Long D (2020) Nrf2 and ferroptosis: a New Research Direction for neurodegenerative Diseases. Front Neurosci 14:267. https://doi.org/10.3389/fnins.2020.00267

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang Q, Bin C, Xue Q, Gao Q, Huang A, Wang K, Tang N (2021) GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis. Cell Death Dis 12(5):426. https://doi.org/10.1038/s41419-021-03718-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Farina M, Vieira LE, Buttari B, Profumo E, Saso L (2021) The Nrf2 pathway in ischemic stroke: a review. Molecules 26(16). https://doi.org/10.3390/molecules26165001

  43. Zhu L, Wei M, Yang N, Li X (2021) Glycyrrhizic acid alleviates the meconium-induced acute lung injury in neonatal rats by inhibiting oxidative stress through mediating the Keap1/Nrf2/HO-1 signal pathway. Bioengineered 12(1):2616–2626. https://doi.org/10.1080/21655979.2021.1937445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang J, Chen G, Wang J, Liu S, Su J (2022) Platycodin D regulates high glucose-induced ferroptosis of HK-2 cells through glutathione peroxidase 4 (GPX4). Bioengineered 13(3):6627–6637. https://doi.org/10.1080/21655979.2022.2045834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yuan Y, Zhai Y, Chen J, Xu X, Wang H (2021) Kaempferol ameliorates oxygen-glucose Deprivation/Reoxygenation-Induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules 11(7). https://doi.org/10.3390/biom11070923

  46. Wang H, Wei W, Lan X, Liu N, Li Y, Ma H, Sun T, Peng X, Zhuang C, Yu J (2019) Neuroprotective effect of Swertiamain on Cerebral Ischemia/Reperfusion Injury by inducing the Nrf2 protective pathway. ACS Chem Neurosci 10(5):2276–2286. https://doi.org/10.1021/acschemneuro.8b00605

    Article  CAS  PubMed  Google Scholar 

  47. Pan X, Fan J, Peng F, **ao L, Yang Z (2022) SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-kappaB pathways. Bioengineered 13(3):7253–7261. https://doi.org/10.1080/21655979.2022.2045830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi M, Wang J, Bi F, Bai Z (2022) Diosmetin alleviates cerebral ischemia-reperfusion injury through Keap1-mediated Nrf2/ARE signaling pathway activation and NLRP3 inflammasome inhibition. Environ Toxicol 37(6):1529–1542. https://doi.org/10.1002/tox.23504

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi.

Ethics declarations

Conflict of interest

The authors declared that there were no conflicts of interest in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Shi, L. Vitexin Improves Cerebral ischemia‑reperfusion Injury by Attenuating Oxidative Injury and Ferroptosis via Keap1/Nrf2/HO-1signaling. Neurochem Res 48, 980–995 (2023). https://doi.org/10.1007/s11064-022-03829-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03829-0

Keywords

Navigation