Log in

POU Domain Class 2 Transcription Factor 2 Inhibits Ferroptosis in Cerebral Ischemia Reperfusion Injury by Activating Sestrin2

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebral ischemia reperfusion injury (CIRI) is the commonest cause of brain dysfunction. Up-regulation of POU domain class 2 transcription factor 2 (POU2F2) has been reported in patients with cerebral ischemia, while the role of POU2F2 in CIRI remains elusive. Middle cerebral artery occlusion/reperfusion (MCAO/R) in mice and oxygen and glucose deprivation/reperfusion (OGD/R) in mouse primary cortical neurons were used as models of CIRI injury in vivo and in vitro. Lentivirus-mediated POU2F2 knockdown further impaired CIRI induced by MCAO/R in mice, which was accompanied by increased-neurological deficits, cerebral infarct volume and neuronal loss. Our evidence suggested that POU2F2 deficiency deteriorated oxidative stress and ferroptosis according to the phenomenon such as the abatement of SOD, GSH, glutathione peroxidase 4 (GPX4) activity and accumulation of ROS, lipid ROS, 4-hydroxynonenal (4-HNE) and MDA. In vivo, primary cortical neurons with POU2F2 knockdown also showed worse neuronal damage, oxidative stress and ferroptosis. Sestrin2 (Sesn2) was reported as a neuroprotection gene and involved in ferroptosis mechanism. Up-regulation of Sesn2 was observed in the ischemic penumbra and OGD/R-induced neuronal cells. Further, we proved that POU2F2, as a transcription factor, could bind to Sesn2 promoter and positively regulate its expression. Sesn2 overexpression relieved oxidative stress and ferroptosis induced by POU2F2 knockdown in OGD/R-treated neurons. This research demonstrated that CIRI induced a compensatory increase of POU2F2 and Sesn2. Down-regulated POU2F2 exacerbated CIRI through the acceleration of oxidative stress and ferroptosis possibly by decreasing Sesn2 expression, which offers new sights into therapeutic mechanisms for CIRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sacco RL, Rundek T (2012) Cerebrovascular disease. Curr Opin Neurol 25(1):1–4. https://doi.org/10.1097/WCO.0b013e32834f89b1

    Article  Google Scholar 

  2. Liu W, Wong A, Law AC et al (2015) Cerebrovascular disease, amyloid plaques, and dementia. Stroke 46(5):1402–1407. https://doi.org/10.1161/strokeaha.114.006571

    Article  Google Scholar 

  3. Catanese L, Tarsia J, Fisher M (2017) Acute ischemic stroke therapy overview. Circ Res 120(3):541–558. https://doi.org/10.1161/circresaha.116.309278

    Article  CAS  Google Scholar 

  4. Frizzell JP (2005) Acute stroke: pathophysiology, diagnosis, and treatment. AACN Clin Issues 16(4):421–440 quiz 597-8. https://doi.org/10.1097/00044067-200510000-00002

    Article  Google Scholar 

  5. Sanderson TH, Reynolds CA, Kumar R et al (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23. https://doi.org/10.1007/s12035-012-8344-z

    Article  CAS  Google Scholar 

  6. Nagy Z, Nardai S (2017) Cerebral ischemia/repefusion injury: from bench space to bedside. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2017.06.011

    Article  Google Scholar 

  7. Patel RAG, McMullen PW (2017) Neuroprotection in the treatment of acute ischemic stroke. Prog Cardiovasc Dis 59(6):542–548. https://doi.org/10.1016/j.pcad.2017.04.005

    Article  Google Scholar 

  8. Meng X, **e W (2018) Neuroprotective effects of radix scrophulariae on cerebral ischemia and reperfusion injury via MAPK pathways. Molecules. https://doi.org/10.3390/molecules23092401

    Article  Google Scholar 

  9. Zhang Y, Zhang Y, ** XF et al (2019) The role of astragaloside IV against cerebral ischemia/reperfusion injury: suppression of apoptosis via promotion of P62-LC3-autophagy. Molecules. https://doi.org/10.3390/molecules24091838

    Article  Google Scholar 

  10. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  Google Scholar 

  11. Hassannia B, Vandenabeele P, Vanden Berghe T (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35(6):830–849. https://doi.org/10.1016/j.ccell.2019.04.002

    Article  CAS  Google Scholar 

  12. **e Y, Hou W, Song X et al (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379. https://doi.org/10.1038/cdd.2015.158

    Article  CAS  Google Scholar 

  13. Stockwell BR, Friedmann Angeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  Google Scholar 

  14. Skouta R, Dixon SJ, Wang J et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136(12):4551–4556. https://doi.org/10.1021/ja411006a

    Article  CAS  Google Scholar 

  15. Alim I, Caulfield JT, Chen Y et al (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177(5):1262–1279

    Article  CAS  Google Scholar 

  16. She X, Lan B, Tian H et al (2020) Cross talk between ferroptosis and cerebral ischemia. Front Neurosci 14:776. https://doi.org/10.3389/fnins.2020.00776

    Article  Google Scholar 

  17. Budanov AV, Lee JH, Karin M (2010) Stressin’ Sestrins take an aging fight. EMBO Mol Med 2(10):388–400. https://doi.org/10.1002/emmm.201000097

    Article  CAS  Google Scholar 

  18. Pasha M, Eid AH (2017) Sestrin2 as a novel biomarker and therapeutic target for various diseases. Oxid Med Cell Longev. https://doi.org/10.1155/2017/3296294

    Article  Google Scholar 

  19. Wang P, Zhao Y, Li Y et al (2019) Sestrin2 overexpression attenuates focal cerebral ischemic injury in rat by increasing Nrf2/HO-1 pathway-mediated angiogenesis. Neuroscience 410:140–149. https://doi.org/10.1016/j.neuroscience.2019.05.005

    Article  CAS  Google Scholar 

  20. Li L, **ao L, Hou Y et al (2016) Sestrin2 silencing exacerbates cerebral ischemia/reperfusion injury by decreasing mitochondrial biogenesis through the AMPK/PGC-1α pathway in rats. Sci Rep 6:30272. https://doi.org/10.1038/srep30272

    Article  CAS  Google Scholar 

  21. Li JY, Ren C, Wang LX et al (2021) Sestrin2 protects dendrite cells against ferroptosis induced by sepsis. Cell Death Dis 12:834. https://doi.org/10.1038/s41419-021-04122-8

    Article  CAS  Google Scholar 

  22. Staudt LM, Clerc RG, Singh H et al (1988) Cloning of a lymphoid-specific cDNA encoding a protein binding the regulatory octamer DNA motif. Science 241(4865):577–580. https://doi.org/10.1126/science.3399892

    Article  CAS  Google Scholar 

  23. Hodson DJ, Shaffer AL, **ao W et al (2016) Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2. Proc Natl Acad Sci USA 113(14):E2039–E2046. https://doi.org/10.1073/pnas.1600557113

    Article  CAS  Google Scholar 

  24. Latchman DS (1996) The Oct-2 transcription factor. Int J Biochem Cell Biol 28(10):1081–1083. https://doi.org/10.1016/1357-2725(96)00050-7

    Article  CAS  Google Scholar 

  25. Latchman DS (1996) Activation and repression of gene expression by POU family transcription factors. Philos Trans R Soc Lond B 351(1339):511–515. https://doi.org/10.1098/rstb.1996.0049

    Article  CAS  Google Scholar 

  26. Camós S, Gubern C, Sobrado M et al (2014) Oct-2 transcription factor binding activity and expression up-regulation in rat cerebral ischaemia is associated with a diminution of neuronal damage in vitro. Neuromolecular Med 16(2):332–349. https://doi.org/10.1007/s12017-013-8279-1

    Article  CAS  Google Scholar 

  27. Lelièvre E, Lionneton F, Soncin F et al (2001) The Ets family contains transcriptional activators and repressors involved in angiogenesis. Int J Biochem Cell Biol 33(4):391–407. https://doi.org/10.1016/s1357-2725(01)00025-5

    Article  Google Scholar 

  28. Ikeshima H, Imai S, Shimoda K et al (1995) Expression of a MADS box gene, MEF2D, in neurons of the mouse central nervous system: implication of its binary function in myogenic and neurogenic cell lineages. Neurosci Lett 200(2):117–120. https://doi.org/10.1016/0304-3940(95)12092-i

    Article  CAS  Google Scholar 

  29. Crack PJ, Taylor JM (2005) Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 38(11):1433–1444. https://doi.org/10.1016/j.freeradbiomed.2005.01.019

    Article  CAS  Google Scholar 

  30. Li M, Ma Y, Zhong Y et al (2020) KALRN mutations promote antitumor immunity and immunotherapy response in cancer. J ImmunoTher Cancer. https://doi.org/10.1136/jitc-2019-000293

    Article  Google Scholar 

  31. McCullough LD, Blizzard K, Simpson ER et al (2003) Aromatase cytochrome P450 and extragonadal estrogen play a role in ischemic neuroprotection. J Neurosci 23(25):8701–8705. https://doi.org/10.1523/jneurosci.23-25-08701.2003

    Article  CAS  Google Scholar 

  32. Chen F, Zhang L, Wang E et al (2018) LncRNA GAS5 regulates ischemic stroke as a competing endogenous RNA for miR-137 to regulate the Notch1 signaling pathway. Biochem Biophys Res Commun 496(1):184–190. https://doi.org/10.1016/j.bbrc.2018.01.022

    Article  CAS  Google Scholar 

  33. Li X, **a Q (2021) Annexin-A1 SUMOylation regulates microglial polarization after cerebral ischemia by modulating IKKα stability via selective autophagy. Sci Adv. https://doi.org/10.1126/sciadv.abc5539

    Article  Google Scholar 

  34. Liu H, Li Y, Sun S et al (2021) Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat Commun 12:114. https://doi.org/10.1038/s41467-020-20275-0

    Article  CAS  Google Scholar 

  35. Conrad M, Angeli JP, Vandenabeele P et al (2016) Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 15(5):348–366. https://doi.org/10.1038/nrd.2015.6

    Article  CAS  Google Scholar 

  36. Longa EZ, Weinstein PR, Carlson S et al (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91. https://doi.org/10.1161/01.str.20.1.84

    Article  CAS  Google Scholar 

  37. Guo P, ** Z, Wu H et al (2019) Effects of irisin on the dysfunction of blood-brain barrier in rats after focal cerebral ischemia/reperfusion. Brain Behav 9(10):e01425. https://doi.org/10.1002/brb3.1425

    Article  Google Scholar 

  38. Bakheet SA, Basha MR, Cai H et al (2007) Lead exposure: expression and activity levels of Oct-2 in the develo** rat brain. Toxicol Sci 95(2):436–442. https://doi.org/10.1093/toxsci/kfl163

    Article  CAS  Google Scholar 

  39. Gottesman RF, Hillis AE (2010) Predictors and assessment of cognitive dysfunction resulting from ischaemic stroke. Lancet Neurol 9(9):895–905. https://doi.org/10.1016/s1474-4422(10)70164-2

    Article  Google Scholar 

  40. Sun MS, ** H, Sun X et al (2018) Free radical damage in ischemia-reperfusion injury: an obstacle in acute ischemic stroke after revascularization therapy. Oxid Med Cell Longev. https://doi.org/10.1155/2018/3804979

    Article  Google Scholar 

  41. Pan J, Konstas AA, Bateman B et al (2007) Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiology 49(2):93–102. https://doi.org/10.1007/s00234-006-0183-z

    Article  Google Scholar 

  42. Wang P, Cui Y, Ren Q et al (2021) Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis 12:447. https://doi.org/10.1038/s41419-021-03725-5

    Article  CAS  Google Scholar 

  43. Li X, Ma N, Xu J et al (2021) Targeting ferroptosis: pathological mechanism and treatment of ischemia-reperfusion injury. Oxid Med Cell Longiv. https://doi.org/10.1155/2021/1587922

    Article  Google Scholar 

  44. Li N, Wang W, Zhou H et al (2020) Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2020.08.009

    Article  Google Scholar 

  45. Yamada N, Karasawa T, Kimura H (2020) Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure. Cell Death Discov 11:144. https://doi.org/10.1038/s41419-020-2334-2

    Article  CAS  Google Scholar 

  46. Galaris D, Barbouti A, Pantopoulos K (2019) Iron homeostasis and oxidative stress: an intimate relationship. Biochim Biophys Acta Mol Cell Res 1866(12):118535. https://doi.org/10.1016/j.bbamcr.2019.118535

    Article  CAS  Google Scholar 

  47. Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73(11–12):2195–2209. https://doi.org/10.1007/s00018-016-2194-1

    Article  CAS  Google Scholar 

  48. Fionda C, Di Bona D, Kosta A et al (2019) The POU-domain transcription factor Oct-6/POU3F1 as a regulator of cellular response to genotoxic stress. Cancers (Basel). https://doi.org/10.3390/cancers11060810

    Article  Google Scholar 

  49. Budanov AV, Sablina AA, Feinstein E et al (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304(5670):596–600. https://doi.org/10.1126/science.1095569

    Article  CAS  Google Scholar 

  50. Park SJ, Cho SS, Kim KM et al (2019) Protective effect of sestrin2 against iron overload and ferroptosis-induced liver injury. Toxicol Appl Pharmacol. https://doi.org/10.1016/j.taap.2019.114665

    Article  Google Scholar 

Download references

Funding

This research was supported by grants from the Youth Fund Project of National Natural Science Foundation of China (Grant Number 82001226) and the Natural Science Foundation of Jilin Province (Grant Number 20210101357JC).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JY, SY; methodology: JY, QG, LW, SY; writing—original draft preparation: JY; writing—review and editing: SY; funding acquisition: SY.

Corresponding author

Correspondence to Shan Yu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

The animal experiment in this study was approved by the ethical guideline of the Animal Welfare and Research Ethics Committee of Jilin University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Guo, Q., Wang, L. et al. POU Domain Class 2 Transcription Factor 2 Inhibits Ferroptosis in Cerebral Ischemia Reperfusion Injury by Activating Sestrin2. Neurochem Res 48, 658–670 (2023). https://doi.org/10.1007/s11064-022-03791-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03791-x

Keywords

Navigation