Log in

2-BFI Provides Neuroprotection Against Fluorosis by Stabilizing Endoplasmic Reticulum–Mitochondria Contact Sites and Inhibiting Activation of the NLRP3 Inflammasome

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

2-(2-benzofu-ranyl)-2-imidazoline (2-BFI) is a drug that has attracted much attention in recent years. It has a therapeutic effect on brain diseases in animal models such as Alzheimer’s disease and cerebral infarction. However, whether 2-BFI affords neuroprotection against the toxicity of fluoride, which can cross the blood–brain barrier and cause neurological dysfunction is not known. We investigated the cell viability and apoptosis of SH-SY5Y cells and primary cultures of cortical neurons exposed to fluoride, and 2-BFI was used to protect both two kinds of cells against the effects of fluoride. We found that 2-BFI can provide neuroprotection on SH-SY5Y cells and primary cultures of cortical neurons upon fluorosis by maintaining the stability of endoplasmic reticulum–mitochondria contact sites and inhibiting activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. This study may provide a new method for protecting against the neurotoxicity induced by fluoride exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data supporting the conclusions of this article will be made available from the corresponding author on reasonable request.

References

  1. Neurath C, Limeback H, Osmunson B, Connett M, Kanter V, Wells CR (2019) Dental fluorosis trends in US oral health surveys: 1986 to 2012. JDR Clin Trans Res 4(4):298–308

    CAS  Google Scholar 

  2. Zeng XX, Deng J, **ang J, Dong YT, Cao K, Liu XH, Chen D, Ran LY, Yang Y, Guan ZZ (2020) Protections against toxicity in the brains of rat with chronic fluorosis and primary neurons exposed to fluoride by resveratrol involves nicotinic acetylcholine receptors. J Trace Elem Med Biol 60:126475

    Article  CAS  Google Scholar 

  3. Yu X, Chen J, Li Y, Liu H, Hou C, Zeng Q, Cui Y, Zhao L, Li P, Zhou Z, Pang S, Tang S, Tian K, Zhao Q, Dong L, Xu C, Zhang X, Zhang S, Liu L, Wang A (2018) Threshold effects of moderately excessive fluoride exposure on children’s health: a potential association between dental fluorosis and loss of excellent intelligence. Environ Int 118:116–124

    Article  CAS  Google Scholar 

  4. Spittle B (1994) Psychopharmacology of fluoride: a review. Int Clin Psychopharmacol 9(2):79–82

    Article  CAS  Google Scholar 

  5. Razdan P, Patthi B, Kumar JK, Agnihotri N, Chaudhari P, Prasad M (2017) Effect of fluoride concentration in drinking water on intelligence quotient of 12-14-year-old children in mathura district: a cross-sectional study. J Int Soc Prev Community Dent 7(5):252–258

    Google Scholar 

  6. Garcia-Lopez AL, Hernandez-Castillo J, Hernandez-Kelly LC, Olivares-Banuelos TN, Ortega A (2020) Fluoride exposure affects glutamine uptake in muller glia cells. Neurotox Res 38(3):765–774

    Article  CAS  Google Scholar 

  7. Zhang C, Yang Y, Gao Y, Sun D (2022) NaF-induced neurotoxicity via activation of the IL-1beta/JNK signaling pathway. Toxicology 469:153132

    Article  CAS  Google Scholar 

  8. Chen R, Zhao LD, Liu H, Li HH, Ren C, Zhang P, Guo KT, Zhang HX, Geng DQ, Zhang CY (2017) Fluoride induces neuroinflammation and alters wnt signaling pathway in BV2 microglial cells. Inflammation 40(4):1123–1130

    Article  CAS  Google Scholar 

  9. Shah FA, Kury LA, Li T, Zeb A, Koh PO, Liu F, Zhou Q, Hussain I, Khan AU, Jiang Y, Li S (2019) Polydatin attenuates neuronal loss reducing neuroinflammation and oxidative stress in rat MCAO models. Front Pharmacol 10:663

    Article  CAS  Google Scholar 

  10. Csordas G, Weaver D, Hajnoczky G (2018) Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol 28(7):523–540

    Article  CAS  Google Scholar 

  11. Markovinovic A, Greig J, Martín-Guerrero SM, Salam S, Paillusson S (2022) Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases. J Cell Sci 135(3):248534

    Article  Google Scholar 

  12. Nagashima S, Takeda K, Ohno N, Ishido S, Aoki M, Saitoh Y, Takada T, Tokuyama T, Sugiura A, Fukuda T, Matsushita N, Inatome R, Yanagi S (2019) MITOL deletion in the brain impairs mitochondrial structure and ER tethering leading to oxidative stress. Life Sci Alliance 2(4):e201900308

    Article  Google Scholar 

  13. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13):3328

    Article  CAS  Google Scholar 

  14. Lee HJ, Jung YH, Choi GE, Kim JS, Chae CW, Lim JR, Kim SY, Yoon JH, Cho JH, Lee SJ, Han HJ (2021) Urolithin a suppresses high glucose-induced neuronal amyloidogenesis by modulating TGM2-dependent ER-mitochondria contacts and calcium homeostasis. Cell Death Differ 28(1):184–202

    Article  CAS  Google Scholar 

  15. Tian JS, Zhai QJ, Zhao Y, Chen R, Zhao LD (2017) 2-(2-benzofuranyl)-2-imidazoline (2-BFI) improved the impairments in AD rat models by inhibiting oxidative stress, inflammation and apoptosis. J Integr Neurosci 16(4):385–400

    Article  Google Scholar 

  16. Han Z, Cheng ZH, Liu S, Yang JL, **ao MJ, Zheng RY, Hou ST (2012) Neurovascular protection conferred by 2-BFI treatment during rat cerebral ischemia. Biochem Biophys Res Commun 424(3):544–548

    Article  CAS  Google Scholar 

  17. Tian J, Chen R, Hu L, Zhang L, Chen J, Cao Y, Guo X, Wang L, Han Z (2018) The protective effect of 2-(2-benzonfu-ranyl)-2-imidazoline against oxygen-glucose deprivation in cultured rat cortical astrocytes. Neurosci Res 133:1–6

    Article  CAS  Google Scholar 

  18. Wu X, Zhao J, Yu S, Chen Y, Wu J, Zhao Y (2012) Sulforaphane protects primary cultures of cortical neurons against injury induced by oxygen-glucose deprivation/reoxygenation via antiapoptosis. Neurosci Bull 28(5):509–516

    Article  CAS  Google Scholar 

  19. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):C817–833

    Article  CAS  Google Scholar 

  20. Sun L, Ma W, Gao W, **ng Y, Chen L, **a Z, Zhang Z, Dai Z (2019) Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome. Cell Death Dis 10(8):542

    Article  Google Scholar 

  21. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832

    Article  CAS  Google Scholar 

  22. Wei W, Pang S, Sun D (2019) The pathogenesis of endemic fluorosis: research progress in the last 5 years. J Cell Mol Med 23(4):2333–2342

    Article  CAS  Google Scholar 

  23. Khan SA, Singh RK, Navit S, Chadha D, Johri N, Navit P, Sharma A, Bahuguna R (2015) Relationship between dental fluorosis and intelligence quotient of school going children in and around Lucknow district: a cross-sectional study. J Clin Diagn Res 9(11):ZC10–ZC15

    Google Scholar 

  24. Zhang C, Ren C, Chen H, Geng R, Fan H, Zhao H, Guo K, Geng D (2013) The analog of Ginkgo biloba extract 761 is a protective factor of cognitive impairment induced by chronic fluorosis. Biol Trace Elem Res 153(1–3):229–236

    Article  CAS  Google Scholar 

  25. Erpapazoglou Z, Mouton-Liger F, Corti O (2017) From dysfunctional endoplasmic reticulum-mitochondria coupling to neurodegeneration. Neurochem Int 109:171–183

    Article  CAS  Google Scholar 

  26. Bousquet P, Feldman J, Schwartz J (1984) Central cardiovascular effects of alpha adrenergic drugs: differences between catecholamines and imidazolines. J Pharmacol Exp Ther 230(1):232–236

    CAS  Google Scholar 

  27. Lione LA, Nutt DJ, Hudson AL (1996) [3H]2-(2-benzofuranyl)-2-imidazoline: a new selective high affinity radioligand for the study of rabbit brain imidazoline I2 receptors. Eur J Pharmacol 304(1–3):221–229

    Article  CAS  Google Scholar 

  28. Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17(3):157–172

    Article  Google Scholar 

  29. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16(1):142

    Article  Google Scholar 

  30. Bravo-Sagua R, Parra V, López-Crisosto C, Díaz P, Quest AFG, Lavandero S (2017) Calcium transport and signaling in mitochondria. Compr Physiol 7(2):623–634

    Article  Google Scholar 

  31. Rossi A, Pizzo P, Filadi R (2019) Calcium, mitochondria and cell metabolism: a functional triangle in bioenergetics. Biochim Biophys Acta Mol Cell Res 1866(7):1068–1078

    Article  CAS  Google Scholar 

  32. Lim JR, Lee HJ, Jung YH, Kim JS, Chae CW, Kim SY, Han HJ (2020) Ethanol-activated CaMKII signaling induces neuronal apoptosis through Drp1-mediated excessive mitochondrial fission and JNK1-dependent NLRP3 inflammasome activation. Cell Commun Signal 18(1):123

    Article  CAS  Google Scholar 

  33. Missiroli S, Patergnani S, Caroccia N, Pedriali G, Perrone M, Previati M, Wieckowski MR, Giorgi C (2018) Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis 9(3):329

    Article  Google Scholar 

  34. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the technical support provided by Professor Ruiqin Yao (Xuzhou Medical University).

Funding

This study was supported (HAB201932) by the Natural Science Foundation of Huai’an City, Jiangsu Province, China. and (XWKYHT20200064) Medical Science and Technology Innovation Project of Xu’zhou Health Commission for Young Scholars.

Author information

Authors and Affiliations

Authors

Contributions

RC: investigation, and writing of the original draft. WX and YS: investigation and writing (review and editing). RZ and ZZ: data analyses. PX: data analyses, resource acquisition, experimental validation, software accrual. CZ and XT: conceptualization and supervision of the study.

Corresponding authors

Correspondence to **aohong Tang or Caiyi Zhang.

Ethics declarations

Conflict of interest

There is no conflict of interest to disclose.

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Xu, W., Sun, Y. et al. 2-BFI Provides Neuroprotection Against Fluorosis by Stabilizing Endoplasmic Reticulum–Mitochondria Contact Sites and Inhibiting Activation of the NLRP3 Inflammasome. Neurochem Res 48, 591–603 (2023). https://doi.org/10.1007/s11064-022-03781-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03781-z

Keywords

Navigation