Log in

Catalpol Exerts Antidepressant-Like Effects by Enhancing Anti-oxidation and Neurotrophy and Inhibiting Neuroinflammation via Activation of HO-1

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Catalpol is an iridoid glycoside with rich content, rich nutrition, and numerous biological activities in Rehmanniae Radix contained in classic antidepressant prescriptions in Chinese clinical medicine. Catalpol has been confirmed previously its exact antidepressant-like effect involved heme oxygenase (HO)-1, but its antidepressant molecular targets and mechanism are still unclear. Here, catalpol's antidepressant-like molecular target was diagnosed and confirmed by ZnPP intervention [the antagonist of HO-1, (10 μg/rat), intracerebroventricular] for the first time, and its molecule mechanism network was determined through HO-1 related pathway and molecules in the hippocampus. Results showed that ZnPP significantly abolished catalpol’s (10 mg/kg) reversal on depressive-like behaviors of chronic unpredictable mild stress rats, abolished catalpol’s up-regulation on the phosphorylation level of extracellular regulated protein kinases (ERK)1/2 and brain-derived neurotrophic factor (BDNF)’s receptor tropomyosin-related kinase B (TrkB), the nuclear expression level of nuclear factor E 2-related factor 2 (Nrf2), the levels of anti-oxidant factors (such as HO-1, SOD, GPX, GST, GSH) and BDNF, and abolished catalpol’s down-regulation on the levels of peroxide and neuroinflammation factors [cyclooxygenase-2 (COX-2), induced nitrogen monoxide synthase (iNOS), nitric oxide (NO)]. Thus, HO-1 could serve as an important potential molecular target for catalpol's antidepressant-like process, and the antidepressant-like mechanism of catalpol could at least involve the activation of HO-1 triggering the up-regulation of the ERK1/2/Nrf2/HO-1 pathway-related factors to enhance the anti-oxidant defense, triggering the down-regulation of the COX-2/iNOS/NO pathway-related factors to inhibit neuroinflammation, and triggering the up-regulation of the BDNF/TrkB pathway to enhance neurotrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the first author on reasonable request.

References

  1. Ebert DD, Buntrock C, Mortier P, Auerbach R, Weisel KK, Kessler RC, Cuijpers P, Green JG, Kiekens G, Nock MK, Demyttenaere K, Bruffaerts R (2019) Prediction of major depressive disorder onset in college students. Depress Anxiety 36:294–304

    Article  PubMed  Google Scholar 

  2. O’Rourke MC, Jamil RT, Siddiqui W (2021) Suicide screening and prevention. StatPearls Publishing, Treasure Island

    Google Scholar 

  3. Vahratian A, Blumberg SJ, Terlizzi EP, Schiller JS (2021) Symptoms of anxiety or depressive disorder and use of mental health care among adults during the COVID-19 pandemic-United States, August 2020-February 2021. MMWR Morb Mortal Wkly Rep 70:490–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. **a W, Jiang H, Di H, Feng J, Meng X, Xu M, Gan Y, Liu T, Lu Z (2022) Association between self-reported depression and risk of all-cause mortality and cause-specific mortality. J Affect Disord 299:353–358

    Article  PubMed  Google Scholar 

  5. Gauffin H, Fast T, Komkova A, Berntsson S, Bostrom I, Landtblom AM (2022) Narcolepsy treatment in Sweden: an observational study. Acta Neurol Scand 145:185–192

    Article  CAS  PubMed  Google Scholar 

  6. Lin CH, Wang SH, Lane HY (2022) Effects of sodium benzoate, a D-amino acid oxidase inhibitor, on perceived stress and cognitive function among patients with late-life depression: a randomized, double-blind, sertraline- and placebo-controlled trial. Int J Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyac006

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ma H, Cai M, Wang H (2021) Emotional blunting in patients with major depressive disorder: a brief non-systematic review of current research. Front Psychiatry 12:1–6

    Article  Google Scholar 

  8. Li C, Huang B, Zhang YW (2021) Chinese herbal medicine for the treatment of depression: effects on the neuroendocrine-immune network. Pharmaceuticals (Basel) 14:2–28

    Article  Google Scholar 

  9. Li C, Huang J, Cheng YC, Zhang YW (2020) Traditional Chinese medicine in depression treatment: from molecules to systems. Front Pharmacol 11:1–11

    CAS  Google Scholar 

  10. Mischoulon D, Rapaport MH (2019) Current role of herbal and natural preparations. Handb Exp Pharmacol 250:225–252

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Wu Z, Wang J (2021) Research on Rehmanniae radix and its traditional prescriptions in the prevention and treatment of depression. Zhong Hua Zhong Yi Yao Xue Kan 12:137–140

    Google Scholar 

  12. Miao J, Zhang X, Ji X, Miao M (2011) Anti-depressant effect of fresh Rehmannia glutinosa Libosch powder on mice. Acta Chin Med 26:813–815

    Google Scholar 

  13. Wang JM, Pei L, Zhang Y, Cheng YX, Niu CL, Cui Y, Feng WS, Wang GF (2018) Ethanol extract of Rehmannia glutinosa exerts antidepressant-like effects on a rat chronic unpredictable mild stress model by involving monoamines and BDNF. Metab Brain Dis 33:885–892

    Article  CAS  PubMed  Google Scholar 

  14. Zhang D, Wen XS, Wang XY, Shi M, Zhao Y (2009) Antidepressant effect of Shu di huang on mice exposed to unpredictable chronic mild stress. J Ethnopharmacol 123:55–60

    Article  PubMed  Google Scholar 

  15. Wang J, Cui Y, Feng W, Zhang Y, Wang G, Wang X, Zhou G (2014) Involvement of the central monoaminergic system in the antidepressant-like effect of catalpol in mice. Biosci Trends 8:248–252

    Article  PubMed  Google Scholar 

  16. Yang C, Shi Z, You L, Du Y, Ni J, Yan D (2020) Neuroprotective effect of catalpol via anti-oxidative, anti-inflammatory, and anti-poptotic mechanisms. Front Pharmacol 11:1–13

    CAS  Google Scholar 

  17. Wang J, Zhang Y, Zhang M, Sun S, Zhong Y, Han L, Xu Y, Wan D, Zhang J, Zhu H (2022) Feasibility of catalpol intranasal administration and its protective effect on acute cerebral ischemia in rats via anti-oxidative and anti-apoptotic mechanisms. Drug Des Dev Ther 16:279–296

    Article  CAS  Google Scholar 

  18. Wang LY, Yu X, Li XX, Zhao YN, Wang CY, Wang ZY, He ZY (2019) Catalpol exerts a neuroprotective effect in the MPTP mouse model of Parkinson’s disease. Front Aging Neurosci 11:1–13

    Article  CAS  Google Scholar 

  19. Wang Z, Huang X, Zhao P, Zhao L, Wang ZY (2018) Catalpol inhibits amyloid-beta generation through promoting alpha-cleavage of APP in Swedish mutant APP overexpressed N2a cells. Front Aging Neurosci 10:1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang J, Liu L, Li F, Wang Z, Zhao J (2020) Treatment with catalpol protects against cisplatin-induced renal injury through Nrf2 and NF-kappa B signaling pathways. Exp Ther Med 20:3025–3032

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bai Y, Zhu R, Tian Y, Li R, Chen B, Zhang H, **a B, Zhao D, Mo F, Zhang D, Gao S (2019) Catalpol in diabetes and its complications: a review of pharmacology, pharmacokinetics, and safety. Molecules 24:1–19

    Article  Google Scholar 

  22. Bi F, Xu Y, Chen G, Wang P (2020) Anti-inflammatory and anti-endoplasmic reticulum stress effects of catalpol against myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats. An Acad Bras Cienc 92:1–14

    Article  CAS  Google Scholar 

  23. El-Hanboshy SM, Helmy MW, Abd-Alhaseeb MM (2021) Catalpol synergistically potentiates the anti-tumour effects of regorafenib against hepatocellular carcinoma via dual inhibition of PI3K/Akt/mTOR/NF-kappaB and VEGF/VEGFR2 signaling pathways. Mol Biol Rep 48:7233–7242

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L, Li C, Fu L, Yu Z, Xu G, Zhou J, Shen M, Feng Z, Zhu H, **e T, Zhou L, Zhou X (2022) Protection of catalpol against triptolide-induced hepatotoxicity by inhibiting excessive autophagy via the PERK-ATF4-CHOP pathway. PeerJ 10:1–17

    Google Scholar 

  25. Yan J, Deng D, Wu Y, Wu K, Qu J, Li F (2020) Catalpol protects rat ovarian granulosa cells against oxidative stress and apoptosis through modulating the PI3K/Akt/mTOR signaling pathway. Biosci Rep 40:1–9

    Article  Google Scholar 

  26. Wang J, Chen R, Liu C, Wu X, Zhang Y (2021) Antidepressant mechanism of catalpol: involvement of the PI3K/Akt/Nrf2/HO-1 signaling pathway in rat hippocampus. Eur J Pharmacol 909:1–12

    Article  Google Scholar 

  27. Wu X, Wang J, Song L, Guan Y, Cao C, Cui Y, Zhang Y, Liu C (2021) Catalpol weakens depressive-like behavior in mice with streptozotocin-induced hyperglycemia via PI3K/AKT/Nrf2/HO-1 signaling pathway. Neuroscience 473:102–118

    Article  CAS  PubMed  Google Scholar 

  28. Song L, Wu X, Wang J, Guan Y, Zhang Y, Gong M, Wang Y, Li B (2021) Antidepressant effect of catalpol on corticosterone-induced depressive-like behavior involves the inhibition of HPA axis hyperactivity, central inflammation and oxidative damage probably via dual regulation of NF-kappa B and Nrf2. Brain Res Bull 177:81–91

    Article  CAS  PubMed  Google Scholar 

  29. Bus BA, Molendijk ML (2016) The neurotrophic hypothesis of depression. Tijdschr Psychiatr 58:215–222

    CAS  PubMed  Google Scholar 

  30. Krishnadas R, Cavanagh J (2012) Depression: an inflammatory illness? J Neurol Neurosurg Psychiatry 83:495–502

    Article  PubMed  Google Scholar 

  31. Michel TM, Pulschen D, Thome J (2012) The role of oxidative stress in depressive disorders. Curr Pharm Des 18:5890–5899

    Article  CAS  PubMed  Google Scholar 

  32. Lin PY, Ma ZZ, Mahgoub M, Kavalali ET, Monteggia LM (2021) A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep 36:1–27

    Article  CAS  Google Scholar 

  33. Wang K, Zhai Q, Wang S, Li Q, Liu J, Meng F, Wang W, Zhang J, Wang D, Zhao D, Liu C, Dai J, Li C, Cui M, Chen J (2021) Cryptotanshinone ameliorates CUS-induced depressive-like behaviors in mice. Transl Neurosci 12:469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abu-Elfotuh K, Al-Najjar AH, Mohammed AA, Aboutaleb AS, Badawi GA (2022) Fluoxetine ameliorates Alzheimer’s disease progression and prevents the exacerbation of cardiovascular dysfunction of socially isolated depressed rats through activation of Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathway. Int Immunopharmacol 104:108488

    Article  CAS  PubMed  Google Scholar 

  35. Naeem K, Tariq AKL, Nasar F, Alattar A, Alshaman R, Shah FA, Khan AU, Li S (2021) Natural dietary supplement, carvacrol, alleviates LPS-induced oxidative stress, neurodegeneration, and depressive-like behaviors via the Nrf2/HO-1 pathway. J Inflamm Res 14:1313–1329

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gao LN, Yan M, Zhou L, Wang J, Sai C, Fu Y, Liu Y, Ding L (2021) Puerarin alleviates depressive-like behavior induced by high-fat diet combined with chronic unpredictable mild stress via repairing TLR4-induced inflammatory damages and phospholipid metabolism disorders. Front Pharmacol 12:1–14

    Article  Google Scholar 

  37. Wang JM, Yang LH, Zhang YY, Niu CL, Cui Y, Feng WS, Wang GF (2015) BDNF and COX-2 participate in anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress. Physiol Behav 151:360–368

    Article  CAS  PubMed  Google Scholar 

  38. Neis VB, Rosa PB, Moretti M, Rodrigues A (2018) Involvement of heme oxygenase-1 in neuropsychiatric and neurodegenerative diseases. Curr Pharm Des 24:2283–2302

    Article  CAS  PubMed  Google Scholar 

  39. Robaczewska J, Kedziora-Kornatowska K, Kucharski R, Nowak M, Muszalik M, Kornatowski M, Kedziora J (2016) Decreased expression of heme oxygenase is associated with depressive symptoms and may contribute to depressive and hypertensive comorbidity. Redox Rep 21:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng WJ, Li P, Huang WY, Huang Y, Chen WJ, Chen YP, Shen JL, Chen JK, Long NS, Meng XJ (2021) Acupuncture relieves stress-induced depressive behavior by reducing oxidative stress and neuroapoptosis in rats. Front Behav Neurosci 15:1–11

    Google Scholar 

  41. Seo K, Yang JH, Kim SC, Ku SK, Ki SH, Shin SM (2014) The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: a potential role of HO-1. Inflammation 37:712–722

    Article  CAS  PubMed  Google Scholar 

  42. Morita K, Nishibori N, Kishibuchi R, Itoh M, Horie Y, Nemoto H (2017) Fermented brown rice extract stimulates BDNF gene transcription in C6 glioma cells: possible connection with HO-1 expression. J Diet Suppl 14:214–228

    Article  CAS  PubMed  Google Scholar 

  43. Nishibori N, Kishibuchi R, Her S, Lee MS, Morita K (2018) Lotus root extract stimulates BDNF gene expression through potential mechanism depending on HO-1 activity in C6 glioma cells. J Diet Suppl 15:11–23

    Article  PubMed  Google Scholar 

  44. **an YF, Ip SP, Li HQ, Qu C, Su ZR, Chen JN, Lin ZX (2019) Isorhynchophylline exerts antidepressant-like effects in mice via modulating neuroinflammation and neurotrophins: involvement of the PI3K/Akt/GSK-3beta signaling pathway. Faseb J 33:10393–10408

    Article  CAS  PubMed  Google Scholar 

  45. Yi JH, Jeon J, Kwon H, Cho E, Yun J, Lee YC, Ryu JH, Park SJ, Cho JH, Kim DH (2020) Rubrofusarin attenuates chronic restraint stress-induced depressive symptoms. Int J Mol Sci 21:1–18

    Article  Google Scholar 

  46. Zhu Z, Tran H, Mathahs MM, Fink BD, Albert JA, Moninger TO, Meier JL, Li M, Schmidt WN (2021) Zinc protoporphyrin binding to telomerase complexes and inhibition of telomerase activity. Pharmacol Res Perspect 9:1–18

    Article  CAS  Google Scholar 

  47. Yang G, Nguyen X, Ou J, Rekulapelli P, Stevenson DK, Dennery PA (2001) Unique effects of zinc protoporphyrin on HO-1 induction and apoptosis. Blood 97:1306–1313

    Article  CAS  PubMed  Google Scholar 

  48. Engel DF, de Oliveira J, Lieberknecht V, Rodrigues A, de Bem AF, Gabilan NH (2018) Duloxetine protects human neuroblastoma cells from oxidative stress-induced cell death through Akt/Nrf-2/HO-1 pathway. Neurochem Res 43:387–396

    Article  CAS  PubMed  Google Scholar 

  49. Rosa PB, Bettio L, Neis VB, Moretti M, Werle I, Leal RB, Rodrigues A (2019) The antidepressant-like effect of guanosine is dependent on GSK-3β inhibition and activation of MAPK/ERK and Nrf2/heme oxygenase-1 signaling pathways. Purinergic Signal 15:491–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramos-Hryb AB, Pazini FL, Costa AP, Cunha MP, Kaster MP, Rodrigues A (2022) Role of heme oxygenase-1 in the antidepressant-like effect of ursolic acid in the tail suspension test. J Pharm Pharmacol 74:13–21

    Article  PubMed  Google Scholar 

  51. Yan L, Xu X, He Z, Wang S, Zhao L, Qiu J, Wang D, Gong Z, Qiu X, Huang H (2020) Antidepressant-like effects and cognitive enhancement of coadministration of Chaihu Shugan San and fluoxetine: dependent on the BDNF-ERK-CREB signaling pathway in the hippocampus and frontal cortex. Biomed Res Int 2020:1–12

    Google Scholar 

  52. Yankelevitch-Yahav R, Franko M, Huly A, Doron R (2015) The forced swim test as a model of depressive-like behavior. J Vis Exp 97:1–7

    Google Scholar 

  53. Du X, Yin M, Yuan L, Zhang G, Fan Y, Li Z, Yuan N, Lv X, Zhao X, Zou S, Deng W, Kosten TR, Zhang XY (2020) Reduction of depression-like behavior in rat model induced by ShRNA targeting norepinephrine transporter in locus coeruleus. Transl Psychiatry 10:1–11

    Article  CAS  Google Scholar 

  54. Zhao M, Tao J, Qian D, Liu P, Shang EX, Jiang S, Guo J, Su SL, Duan JA, Du L (2016) Simultaneous determination of loganin, morroniside, catalpol and acteoside in normal and chronic kidney disease rat plasma by UPLC-MS for investigating the pharmacokinetics of Rehmannia glutinosa and Cornus officinalis Sieb drug pair extract. J Chromatogr B 1009–1010:122–129

    Article  CAS  Google Scholar 

  55. Zhang JC, Wu J, Fujita Y, Yao W, Ren Q, Yang C, Li SX, Shirayama Y, Hashimoto K (2014) Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int J Neuropsychopharmacol 18:1–12

    Google Scholar 

  56. Rostami F, Javan M, Moghimi A, Haddad-Mashadrizeh A, Fereidoni M (2020) Prenatal stress promotes icv-STZ-induced sporadic Alzheimer’s pathology through central insulin signaling change. Life Sci 241:1–10

    Article  CAS  Google Scholar 

  57. Manosso L, Moretti M, Rosa J, Cunha M, Rodrigues A (2017) Evidence for the involvement of heme oxygenase-1 in the antidepressant-like effect of zinc. Pharmacol Rep 69:497–503

    Article  CAS  PubMed  Google Scholar 

  58. Belleau EL, Treadway MT, Pizzagalli DA (2019) The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry 85:443–453

    Article  PubMed  Google Scholar 

  59. Zhou SM, Guan SY, Yang L, Yang LK, Wang L, Nie HF, Li X, Zhao MG, Yang Q, Wu H (2017) Cucurbitacin IIa exerts antidepressant-like effects on mice exposed to chronic unpredictable mild stress. NeuroReport 28:259–267

    Article  CAS  PubMed  Google Scholar 

  60. Huang HJ, Chen XR, Han QQ, Wang J, Pilot A, Yu R, Liu Q, Li B, Wu GC, Wang YQ, Yu J (2019) The protective effects of Ghrelin/GHSR on hippocampal neurogenesis in CUMS mice. Neuropharmacology 155:31–43

    Article  CAS  PubMed  Google Scholar 

  61. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358–364

    Article  CAS  PubMed  Google Scholar 

  62. Wang M, Dong W, Wang R, Xu X, Wu Y, Sun G, Sun X (2020) Gastrodiae rhizoma water extract ameliorates hypothalamic-pituitary-adrenal axis hyperactivity and inflammation induced by chronic unpredictable mild stress in rats. Biomed Res Int 2020:1–7

    Google Scholar 

  63. Yan X, Zeng D, Zhu H, Zhang Y, Shi Y, Wu Y, Tang H, Li D (2020) MiRNA-532-5p regulates CUMS-induced depression-Like behaviors and modulates LPS-induced proinflammatory cytokine signaling by targeting STAT3. Neuropsychiatr Dis Treat 16:2753–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang Z, Wang L, Du J, Li Y, Yang H, Li C, Li H, Hu H (2016) Lipid raft localization of epidermal growth factor receptor alters matrix metalloproteinase-1 expression in SiHa cells via the MAPK/ERK signaling pathway. Oncol Lett 12:4991–4998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiang N, Wang H, Huang H, Lv J, Zeng G, Wang Q, Bao Y, Chen Y, Liu X (2021) The antidepressant-like effects of Shen Yuan in a chronic unpredictable mild stress rat model. Front Psychiatry 12:1–11

    Google Scholar 

  66. Bian H, Wang G, Huang J, Liang L, Zheng Y, Wei Y, Wang H, **ao L, Wang H (2020) Dihydrolipoic acid protects against lipopolysaccharide-induced behavioral deficits and neuroinflammation via regulation of Nrf2/HO-1/NLRP3 signaling in rat. J Neuroinflamm 17:1–13

    Article  CAS  Google Scholar 

  67. Yan T, Liu B, Li F, Wu B, **ao F, He B, Jia Y (2021) Schizandrin ameliorates behavioral disorders in hepatic injury mice via regulation of oxidative stress and neuroinflammation. Immunopharmacol Immunotoxicol 43:212–222

    Article  CAS  PubMed  Google Scholar 

  68. Park EJ, Kim YM, Kim HJ, Chang KC (2018) Luteolin activates ERK1/2- and Ca2+-dependent HO-1 induction that reduces LPS-induced HMGB1, iNOS/NO, and COX-2 expression in RAW264.7 cells and mitigates acute lung injury of endotoxin mice. Inflamm Res 67:445–453

    Article  CAS  PubMed  Google Scholar 

  69. Okorji UP, Velagapudi R, El-Bakoush A, Fiebich BL, Olajide OA (2016) Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms. Mol Neurobiol 53:6426–6443

    Article  CAS  PubMed  Google Scholar 

  70. Zhang F, Hao H, Liu Y, Fan K, Dai W, Liu W, Kong L (2022) Shenmai injection alleviates acute lung injury in a severe acute pancreatitis rat model via heme oxygenase-1 upregulation. Altern Ther Health Med 28:109–115

    PubMed  Google Scholar 

  71. Hamori CJ, Vreman HJ, Rodgers PA, Stevenson DK (1989) Zinc protoporphyrin inhibits CO production in rats. J Pediatr Gastroenterol Nutr 8:110–115

    Article  CAS  PubMed  Google Scholar 

  72. Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J (2019) Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav Rev 99:101–116

    Article  PubMed  Google Scholar 

  73. Ossowska G, Danilczuk Z, Klenk-Majewska B, Czajkowski L, Zebrowska-Lupina I (2004) Antidepressants in chronic unpredictable mild stress (CUMS)-induced deficit of fighting behavior. Pol J Pharmacol 56:305–311

    CAS  PubMed  Google Scholar 

  74. Castagné V, Moser P, Roux S, Porsolt R (2010) Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Curr Protoc Pharmacol. https://doi.org/10.1002/0471141755.ph0508s49

    Article  PubMed  Google Scholar 

  75. Zhang K, Lei N, Li M, Li J, Li C, Shen Y, Guo P, **ong L, **e Y (2021) Cang-Ai volatile oil ameliorates depressive behavior induced by chronic stress through IDO-mediated tryptophan degradation pathway. Front Psychiatry 12:1–12

    Article  Google Scholar 

  76. Qiao Y, Zhao J, Li C, Zhang M, Wei L, Zhang X, Kurskaya O, Bi H, Gao T (2020) Effect of combined chronic predictable and unpredictable stress on depression-like symptoms in mice. Ann Transl Med 8:1–20

    Article  Google Scholar 

  77. Li J, Zhou Y, Liu BB, Liu Q, Geng D, Weng LJ, Yi LT (2013) Nobiletin ameliorates the deficits in hippocampal BDNF, TrkB, and synapsin I induced by chronic unpredictable mild stress. Evid Based Complement Altern Med 2013:1–11

    Google Scholar 

  78. Zhuo J, Chen B, Sun C, Jiang T, Chen Z, Liu Y, Nie J, Yang H, Zheng J, Lai X, Su Z, Li C, Li Y (2020) Patchouli alcohol protects against chronic unpredictable mild stress-induced depressant-like behavior through inhibiting excessive autophagy via activation of mTOR signaling pathway. Biomed Pharmacother 127:1–9

    Article  CAS  Google Scholar 

  79. Xu X, **ao X, Yan Y, Zhang T (2021) Activation of liver X receptors prevents emotional and cognitive dysfunction by suppressing microglial M1-polarization and restoring synaptic plasticity in the hippocampus of mice. Brain Behav Immun 94:111–124

    Article  CAS  PubMed  Google Scholar 

  80. Zhou XM, Liu CY, Liu YY, Ma QY, Zhao X, Jiang YM, Li XJ, Chen JX (2021) **aoyaosan alleviates hippocampal glutamate-induced toxicity in the CUMS rats via NR2B and PI3K/Akt signaling pathway. Front Pharmacol 12:1–16

    Google Scholar 

  81. Ortolani D, Garcia MC, Melo-Thomas L, Spadari-Bratfisch RC (2014) Stress-induced endocrine response and anxiety: the effects of comfort food in rats. Stress 17:211–218

    Article  CAS  PubMed  Google Scholar 

  82. Ulrich-Lai YM, Fulton S, Wilson M, Petrovich G, Rinaman L (2015) Stress exposure, food intake and emotional state. Stress 18:381–399

    PubMed  PubMed Central  Google Scholar 

  83. Tang Z, Song J, Yu Z, Cui K, Ruan Y, Wang T, Yang J, Wang S, Liu J (2019) Melatonin treatment ameliorates hyperhomocysteinemia-induced impairment of erectile function in a rat model. J Sex Med 16:1506–1517

    Article  PubMed  Google Scholar 

  84. Lai C, Chen Q, Ding Y, Liu H, Tang Z (2020) Emodin protected against synaptic impairment and oxidative stress induced by fluoride in SH-SY5Y cells by modulating ERK1/2/Nrf2/HO-1 pathway. Environ Toxicol 35:922–929

    Article  CAS  PubMed  Google Scholar 

  85. Dang R, Wang M, Li X, Wang H, Liu L, Wu Q, Zhao J, Ji P, Zhong L, Licinio J, **e P (2022) Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. J Neuroinflamm 19:1–29

    Article  CAS  Google Scholar 

  86. Wang W, Zheng L, Xu L, Tu J, Gu X (2020) Pinocembrin mitigates depressive-like behaviors induced by chronic unpredictable mild stress through ameliorating neuroinflammation and apoptosis. Mol Med 26:1–11

    Article  Google Scholar 

  87. Fahim AT, Abd EA, Sadik N, Ali BM (2019) Resveratrol and dimethyl fumarate ameliorate testicular dysfunction caused by chronic unpredictable mild stress-induced depression in rats. Arch Biochem Biophys 665:152–165

    Article  CAS  PubMed  Google Scholar 

  88. Schwer CI, Guerrero AM, Humar M, Roesslein M, Goebel U, Stoll P, Geiger KK, Pannen BH, Hoetzel A, Schmidt R (2008) Heme oxygenase-1 inhibits the proliferation of pancreatic stellate cells by repression of the extracellular signal-regulated kinase1/2 pathway. J Pharmacol Exp Ther 327:863–871

    Article  CAS  PubMed  Google Scholar 

  89. Zhong CC, Gao YN, Huang XC, Zhu X, Miao HH, Xu XG, Qin YB (2021) Cannabinoid receptor agonist WIN55212-2 reduces unpredictable mild stress-induced depressive behavior of rats. Ann Transl Med 9:1–14

    Article  Google Scholar 

  90. Jiang N, Wang H, Li C, Zeng G, Lv J, Wang Q, Chen Y, Liu X (2021) The antidepressant-like effects of the water extract of Panax ginseng and Polygala tenuifolia are mediated via the BDNF-TrkB signaling pathway and neurogenesis in the hippocampus. J Ethnopharmacol 267:33513–33516

    Article  CAS  Google Scholar 

  91. Geng J, Liu J, Yuan X, Liu W, Guo W (2019) Andrographolide triggers autophagy-mediated inflammation inhibition and attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in mice. Toxicol Appl Pharmacol 379:1–10

    Article  CAS  Google Scholar 

  92. Casaril AM, Domingues M, Lourenco DA, Vieira B, Begnini K, Corcini CD, Franca RT, Varela JA, Seixas FK, Collares T, Lenardao EJ, Savegnago L (2020) 3-[(4-chlorophenyl) selanyl]-1-methyl-1H-indole ameliorates long-lasting depression- and anxiogenic-like behaviors and cognitive impairment in post-septic mice: involvement of neuroimmune and oxidative hallmarks. Chem Biol Interact 331:1–13

    Article  CAS  Google Scholar 

  93. Park BK, Kim NS, Kim YR, Yang C, Jung IC, Jang IS, Seo CS, Choi JJ, Lee MY (2020) Antidepressant and anti-neuroinflammatory effects of Bangpungtongsung-San. Front Pharmacol 11:1–15

    Article  CAS  Google Scholar 

  94. Chen XQ, Li CF, Chen SJ, Liang WN, Wang M, Wang SS, Dong SQ, Yi LT, Li CD (2018) The antidepressant-like effects of Chaihu Shugan San: dependent on the hippocampal BDNF-TrkB-ERK/Akt signaling activation in perimenopausal depression-like rats. Biomed Pharmacother 105:45–52

    Article  CAS  PubMed  Google Scholar 

  95. Wu HH, Hsieh WS, Yang YY, Tsai MC (2006) Lipoteichoic acid induces prostaglandin E (2) release and cyclooxygenase-2 synthesis in rat cortical neuronal cells: involvement of PKCepsilon and ERK activation. Life Sci 79:272–280

    Article  CAS  PubMed  Google Scholar 

  96. **a Q, Hu Q, Wang H, Yang H, Gao F, Ren H, Chen D, Fu C, Zheng L, Zhen X, Ying Z, Wang G (2015) Induction of COX-2-PGE2 synthesis by activation of the MAPK/ERK pathway contributes to neuronal death triggered by TDP-43-depleted microglia. Cell Death Dis 6:1–11

    Article  CAS  Google Scholar 

  97. Madrigal JL, Moro MA, Lizasoain I, Lorenzo P, Fernandez AP, Rodrigo J, Bosca L, Leza JC (2003) Induction of cyclooxygenase-2 accounts for restraint stress-induced oxidative status in rat brain. Neuropsychopharmacol 28:1579–1588

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the foundation of the National Natural Science Foundation of China (81773928), Zhong**g High-level Talent Special Fund of Henan University of Chinese Medicine (00104311-2021-1-43), and the Funding Scheme for Young Key Teachers of Colleges and Universities in Henan Province (2014GGJS-072).

Author information

Authors and Affiliations

Authors

Contributions

XW conducted the animal experiment, completed western blot, performed the testing of the kits, and developed the manuscript. CL conducted the animal experiment and performed the testing of the kits. JW designed the experiments, developed the manuscript, and acquired funding. YG, LS, and RC participated in the animal experiment. MG performed the testing of the kits. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junming Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The experimental protocol was duly approved by the Experimental Animal Ethics Committee of the Henan University of Chinese Medicine in 27th February 2017.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Liu, C., Wang, J. et al. Catalpol Exerts Antidepressant-Like Effects by Enhancing Anti-oxidation and Neurotrophy and Inhibiting Neuroinflammation via Activation of HO-1. Neurochem Res 47, 2975–2991 (2022). https://doi.org/10.1007/s11064-022-03641-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03641-w

Keywords

Navigation