Log in

Olfactory Dysfunction in Diabetic Rats is Associated with miR-146a Overexpression and Inflammation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) is associated with cognitive decline and dementia. Both neurodegenerative conditions are characterized by olfactory dysfunction (OD) which is also observed in diabetic patients. Diabetes and neurodegeneration display altered miRNAs expression; therefore, the study of miRNAs in the diabetic olfactory system is important in order to know the mechanisms involved in neurodegeneration induced by T2D. In this work we evaluated the expression of miRs206, 451, 146a and 34a in the olfactory bulb (OB) of T2D rats and its association with OD. T2D induction was performed by administering streptozotocin to neonatal rats. The olfactory function was evaluated after reaching the adulthood by employing the buried pellet and social recognition tests. After 18 weeks, animals were sacrificed to determinate miRNAs and protein expression in the OB. T2D animals showed a significant increase in the latency to find the odor stimulus in the buried pellet test and a significant reduction in the interest to investigate the novel juvenile subjects in the social recognition test, indicating OD. In miRNAs analysis we observed a significant increase of miR-146a expression in the OB of T2D rats when compared to controls. This increase in miR-146a correlated with the overexpression of IL-1β in the OB of T2D rats. The present results showed that OD in T2D rats is associated with IL-1β mediated-inflammation and miR-146a overexpression, suggesting that high levels of IL-1β could trigger miR-146a upregulation as a negative feedback of the inflammatory response in the OB of T2D rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zaghloul H, Pallayova M, Al-Nuaimi O et al (2018) Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions. Diabet Med 35:41–52. https://doi.org/10.1111/dme.13542

    Article  CAS  PubMed  Google Scholar 

  2. Moura J, Børsheim E, Carvalho E (2014) The role of micrornas in diabetic complications—special emphasis on wound healing. Genes (Basel) 5:926–956. https://doi.org/10.3390/genes5040926

    Article  CAS  Google Scholar 

  3. Kong APS, Xu G, Brown N et al (2013) Diabetes and its comorbidities - Where East meets West. Nat Rev Endocrinol 9:537–547

    Article  CAS  Google Scholar 

  4. Janson J, Laedtke T, Parisi JE et al (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481. https://doi.org/10.2337/diabetes.53.2.474

    Article  CAS  PubMed  Google Scholar 

  5. Matsuzaki T, Sasaki K, Tanizaki Y et al (2010) Insulin resistance is associated with the pathology of Alzheimer disease: the Hisayama study. Neurology 75:764–770. https://doi.org/10.1212/WNL.0b013e3181eee25f

    Article  CAS  PubMed  Google Scholar 

  6. Umegaki H (2009) Pathophysiology of cognitive dysfunction in older people with type 2 diabetes: vascular changes or neurodegeneration? Age Ageing 39:8–10

    Article  Google Scholar 

  7. Strachan MWJ, Reynolds RM, Marioni RE, Price JF (2011) Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol 7:108–114. https://doi.org/10.1038/nrendo.2010.228

    Article  CAS  PubMed  Google Scholar 

  8. Lietzau G, Davidsson W, Östenson CG et al (2018) Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin. Acta Neuropathol Commun 6:1–15. https://doi.org/10.1186/s40478-018-0517-1

    Article  CAS  Google Scholar 

  9. Croy I, Nordin S, Hummel T (2014) Olfactory disorders and quality of life-an updated review. Chem Senses 39:185–194. https://doi.org/10.1093/chemse/bjt072

    Article  PubMed  Google Scholar 

  10. Tian S, Huang R, Han J et al (2018) Increased plasma Interleukin-1β level is associated with memory deficits in type 2 diabetic patients with mild cognitive impairment. Psychoneuroendocrinology 96:148–154. https://doi.org/10.1016/j.psyneuen.2018.06.014

    Article  CAS  PubMed  Google Scholar 

  11. **e Y, Chu A, Feng Y et al (2018) MicroRNA-146a: a comprehensive indicator of inflammation and oxidative stress status induced in the brain of chronic T2DM rats. Front Pharmacol 9:1–11. https://doi.org/10.3389/fphar.2018.00478

    Article  CAS  Google Scholar 

  12. Codocedo JF, Ríos JA, Godoy JA, Inestrosa NC (2016) Are microRNAs the molecular link between metabolic syndrome and Alzheimer’s disease? Mol Neurobiol 53:2320–2338. https://doi.org/10.1007/s12035-015-9201-7

    Article  CAS  PubMed  Google Scholar 

  13. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20:21–37. https://doi.org/10.1038/s41580-018-0045-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Behm-Ansmant I, Rehwinkel J, Izaurralde E (2006) MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harbor Sympnew osia on Quantitative Biology. Cold Spring Harbor Laboratory Press, New York, pp 523–530

    Google Scholar 

  15. Miao C, Zhang G, **e Z, Chang J (2018) MicroRNAs in the pathogenesis of type 2 diabetes: new research progress and future direction. Can J Physiol Pharmacol 96:103–112. https://doi.org/10.1139/cjpp-2017-0452

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Sun X, Icli B, Feinberg MW (2017) Emerging roles for MicroRNAs in diabetic microvascular disease: novel targets for therapy. Endocr Rev 38:145–168. https://doi.org/10.1210/er.2016-1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Natarajan R, Putta S, Kato M (2012) MicroRNAs and diabetic complications. J Cardiovasc Transl Res 5:413–422. https://doi.org/10.1007/s12265-012-9368-5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maciotta S, Meregalli M, Torrente Y (2013) The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 7:1–17. https://doi.org/10.3389/fncel.2013.00265

    Article  CAS  Google Scholar 

  19. Hernandez-rapp J, Rainone S, Hébert SS (2017) Progress in neuro-psychopharmacology & biological psychiatry MicroRNAs underlying memory de fi cits in neurodegenerative disorders. Prog Neuropsychopharmacol Biol Psychiatry 73:79–86. https://doi.org/10.1016/j.pnpbp.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  20. Kolfschoten IGM, Roggli E, Nesca V, Regazzi R (2009) Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes Metab 11:118–129. https://doi.org/10.1111/j.1463-1326.2009.01118.x

    Article  CAS  PubMed  Google Scholar 

  21. Karolina DS, Armugam A, Sepramaniam S, Jeyaseelan K (2012) MiRNAs and diabetes mellitus. Expert Rev Endocrinol Metab 7:281–300. https://doi.org/10.1586/eem.12.21

    Article  CAS  PubMed  Google Scholar 

  22. Seyhan AA, Nunez Lopez YO, **e H et al (2016) Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Sci Rep 6:31479. https://doi.org/10.1038/srep31479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gong Q, Su G (2017) Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep. https://doi.org/10.1042/BSR20171157

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moon J, Lee S-T, Kong IG et al (2016) Early diagnosis of Alzheimer’s disease from elevated olfactory mucosal miR-206 level. Sci Rep 6:20364. https://doi.org/10.1038/srep20364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin Y, Shen J, Li D et al (2017) MiR-34a contributes to diabetes-related cochlear hair cell apoptosis via SIRT1/HIF-1α signaling. Gen Comp Endocrinol 246:63–70. https://doi.org/10.1016/j.ygcen.2017.02.017

    Article  CAS  PubMed  Google Scholar 

  26. Zhuo S, Yang M, Zhao Y et al (2016) MicroRNA-451 negatively regulates hepatic glucose production and glucose homeostasis by targeting glycerol kinase-mediated gluconeogenesis. Diabetes 65:3276–3288. https://doi.org/10.2337/db16-0166

    Article  CAS  PubMed  Google Scholar 

  27. Alsharafi WA, **ao B, Abuhamed MM et al (2015) Correlation between IL-10 and microRNA-187 expression in epileptic rat hippocampus and patients with temporal lobe epilepsy. Front Cell Neurosci 9:466. https://doi.org/10.3389/fncel.2015.00466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumarswamy R, Lyon AR, Volkmann I et al (2012) SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J 33:1067–1075. https://doi.org/10.1093/eurheartj/ehs043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mavrikaki M, Anastasiadou E, Ozdemir RA et al (2019) Overexpression of miR-9 in the nucleus accumbens increases oxycodone self-administration. Int J Neuropsychopharmacol 22:383–393. https://doi.org/10.1093/ijnp/pyz015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Machado C, Reis-Silva T, Lyra C et al (2018) Buried food-seeking test for the assessment of olfactory detection in mice. BIO-PROTOCOL. https://doi.org/10.21769/bioprotoc.2897

    Article  Google Scholar 

  31. Jacobs S, Huang F, Tsien J, Wei W (2016) Social recognition memory test in rodents. BIO-PROTOCOL. https://doi.org/10.21769/bioprotoc.1804

    Article  Google Scholar 

  32. Jacobs SA, Tsien JZ (2014) Overexpression of the NR2A subunit in the forebrain impairs long-term social recognition and non-social olfactory memory. Genes Brain Behav 13:376–384. https://doi.org/10.1111/gbb.12123

    Article  CAS  PubMed  Google Scholar 

  33. Almeida-Santos AF, Carvalho VR, Jaimes LF et al (2019) Social isolation impairs the persistence of social recognition memory by disturbing the glutamatergic tonus and the olfactory bulb-dorsal hippocampus coupling. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-018-36871-6

    Article  CAS  Google Scholar 

  34. Zhang L, Chopp M, Zhang Y et al (2016) Diabetes mellitus impairs cognitive function in middle-aged rats and neurological recovery in middle-aged rats after stroke. Stroke 47:2112–2118. https://doi.org/10.1161/STROKEAHA.115.012578

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang RN, Bouwens L, Klöppel G (1996) Beta-cell growth in adolescent and adult rats treated with streptozotocin during the neonatal period. Diabetologia 39:548–557. https://doi.org/10.1007/BF00403301

    Article  CAS  PubMed  Google Scholar 

  36. Tourrel C, Bailbé D, Meile MJ et al (2001) Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 50:1562–1570. https://doi.org/10.2337/diabetes.50.7.1562

    Article  CAS  PubMed  Google Scholar 

  37. Schaffer SW, Wilson GL (1993) Insulin resistance and mechanical dysfunction in hearts of Wistar rats with streptozotocin-induced non-insulin-dependent diabetes mellitus. Diabetologia 36:195–199. https://doi.org/10.1007/bf00399949

    Article  CAS  PubMed  Google Scholar 

  38. Takada J, Machado MA, Peres SB et al (2007) Neonatal streptozotocin-induced diabetes mellitus: a model of insulin resistance associated with loss of adipose mass. Metabolism 56:977–984. https://doi.org/10.1016/j.metabol.2006.05.021

    Article  CAS  PubMed  Google Scholar 

  39. Liang X-D, Guo Y-Y, Sun M et al (2011) Streptozotocin-induced expression of Ngn3 and Pax4 in neonatal rat pancreatic α-cells. World J Gastroenterol 17:2812–2820. https://doi.org/10.3748/wjg.v17.i23.2812

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hemmings SJ, Spafford D (2000) Neonatal STZ model of type II diabetes mellitus in the Fischer 344 rat: characteristics and assessment of the status of the hepatic adrenergic receptors. Int J Biochem Cell Biol 32:905–919. https://doi.org/10.1016/S1357-2725(00)00019-4

    Article  CAS  PubMed  Google Scholar 

  41. Barragán-iglesias P, Oidor-chan VH, Loeza-alcocer E et al (2018) Pharmacological reports evaluation of the neonatal streptozotocin model of diabetes in rats : evidence for a model of neuropathic pain. Pharmacol Rep 70:294–303. https://doi.org/10.1016/j.pharep.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  42. Patil MA, Suryanarayana P, Putcha UK et al (2014) Evaluation of neonatal streptozotocin induced diabetic rat model for the development of cataract. Oxid Med Cell Longev 2014:463264. https://doi.org/10.1155/2014/463264

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rivière S, Soubeyre V, Jarriault D et al (2016) High fructose diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice. Sci Rep 6:1–13. https://doi.org/10.1038/srep34011

    Article  CAS  Google Scholar 

  44. Faizal M (2017) A histomorphological study on the olfactory bulb of diabetic albino rats. Int J Clin Exp Med Sci 3:47. https://doi.org/10.11648/j.ijcems.20170304.12

    Article  Google Scholar 

  45. Julliard A-K, Al Koborssy D, Fadool DA, Palouzier-Paulignan B (2017) Nutrient sensing: another chemosensitivity of the olfactory system. Front Physiol 8:468. https://doi.org/10.3389/fphys.2017.00468

    Article  PubMed  PubMed Central  Google Scholar 

  46. Aimé P, Hegoburu C, Jaillard T et al (2012) A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats. PLoS ONE. https://doi.org/10.1371/journal.pone.0051227

    Article  PubMed  PubMed Central  Google Scholar 

  47. Palouzier-Paulignan B, Lacroix M-C, Aimé P et al (2012) Olfaction under metabolic influences equal contribution. Chem Senses 37:769–797. https://doi.org/10.1093/chemse/bjs059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fadool DA, Tucker K, Phillips JJ, Simmen JA (2000) Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv1.3. J Neurophysiol 83:2332–2348. https://doi.org/10.1152/jn.2000.83.4.2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimshek DR, Bus T, Kim J et al (2005) Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors. PLoS Biol 3:e354. https://doi.org/10.1371/journal.pbio.0030354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lietzau G, Nyström T, Östenson CG et al (2016) Type 2 diabetes-induced neuronal pathology in the piriform cortex of the rat is reversed by the GLP-1 receptor agonist Exendin-4. Oncotarget 7:5865–5876. https://doi.org/10.18632/oncotarget.6823

    Article  PubMed  PubMed Central  Google Scholar 

  51. Roberts RO, Christianson TJH, Kremers WK et al (2016) Association between olfactory dysfunction and amnestic mild cognitive impairment and Alzheimer disease dementia. JAMA Neurol 73:93–101. https://doi.org/10.1001/jamaneurol.2015.2952

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dintica CS, Marseglia A, Rizzuto D et al (2019) Impaired olfaction is associated with cognitive decline and neurodegeneration in the brain. Neurology 92:E700–E709. https://doi.org/10.1212/WNL.0000000000006919

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sayilar EI (2016) Biomarker potential of urine miR-451 at different stages of diabetic nephropathy. J Diabetes Metab. https://doi.org/10.4172/2155-6156.1000650

    Article  Google Scholar 

  54. Ayers D, Scerri C (2018) Non-coding RNA influences in dementia. Non-coding RNA Res 3:188–194. https://doi.org/10.1016/j.ncrna.2018.09.002

    Article  CAS  Google Scholar 

  55. Mai H, Fan W, Wang Y et al (2019) Intranasal administration of miR-146a agomir rescued the pathological process and cognitive impairment in an AD mouse model. Mol Ther Nucleic Acids 18:681–695. https://doi.org/10.1016/j.omtn.2019.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kalani A, Chaturvedi P, Maldonado C et al (2017) Dementia-like pathology in type-2 diabetes: a novel microRNA mechanism. Mol Cell Neurosci 80:58–65. https://doi.org/10.1016/j.mcn.2017.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kong L, Zhu J, Han W et al (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48:61–69. https://doi.org/10.1007/s00592-010-0226-0

    Article  CAS  PubMed  Google Scholar 

  58. Cava C, Manna I, Gambardella A et al (2018) Potential role of miRNAs as theranostic biomarkers of epilepsy. Mol Ther Nucleic Acids 13:275–290. https://doi.org/10.1016/j.omtn.2018.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Iyer A, Zurolo E, Prabowo A et al (2012) MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS ONE 7:17–19. https://doi.org/10.1371/journal.pone.0044789

    Article  CAS  Google Scholar 

  60. Shaik MM, Tamargo IA, Abubakar MB et al (2018) The role of microRNAs in Alzheimer’s disease and their therapeutic potentials. Genes (Basel). https://doi.org/10.3390/genes9040174

    Article  Google Scholar 

  61. Slota JA, Booth SA (2019) MicroRNAs in neuroinflammation: Implications in disease pathogenesis, biomarker discovery and therapeutic applications. Non-coding RNA. https://doi.org/10.3390/ncrna5020035

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li G, Ling S (2017) MiR-124 promotes newborn olfactory bulb neuron dendritic morphogenesis and spine density. J Mol Neurosci 61:159–168. https://doi.org/10.1007/s12031-016-0873-x

    Article  CAS  PubMed  Google Scholar 

  63. Åkerblom M, Sachdeva R, Barde I et al (2012) MicroRNA-124 is a subventricular zone neuronal fate determinant. J Neurosci 32:8879–8889. https://doi.org/10.1523/JNEUROSCI.0558-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stappert L, Klaus F, Brüstle O (2018) MicroRNAs engage in complex circuits regulating adult neurogenesis. Front Neurosci 12:707

    Article  Google Scholar 

  65. Sun T, Li S, Yang J et al (2014) Identification of a microRNA regulator for axon guidance in the olfactory bulb of adult mice. Gene 547:319–328. https://doi.org/10.1016/j.gene.2014.06.063

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Fondo Sectorial de Investigación en Salud y Seguridad Social Convocatoria 2015-01 by the Consejo Nacional de Ciencia y Tecnología, CONACyT (261481), and a postdoctoral fellowship (Adriana Jiménez) from Programa de Becas Posdoctorales de la Dirección General de Asuntos del Personal Académico (DGAPA), División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). The authors wish to thank Mrs. Josefina Bolado, Head of the Scientific Paper Translation Department from División de Investigación at Facultad de Medicina, UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalinda Guevara-Guzmán.

Ethics declarations

Conflict of interest

All the authors declared that they do not have any conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, A., Organista-Juárez, D., Torres-Castro, A. et al. Olfactory Dysfunction in Diabetic Rats is Associated with miR-146a Overexpression and Inflammation. Neurochem Res 45, 1781–1790 (2020). https://doi.org/10.1007/s11064-020-03041-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03041-y

Keywords

Navigation