Log in

Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve ligation (PSNL). In the formalin assay, phenytoin (PHT, 6 mg/kg), sodium valproate (VPA, 300 mg/kg), amitriptyline (AMI, 7.5 and 15 mg/kg), gabapentin (GBP, 30 and 70 mg/kg), tiagabine (TGB, 5 and 15 mg/kg), and acetominophen (APAP, 250 and 500 mg/kg) reduced both phases of the formalin response to ≤ 25% of vehicle-treated mice. In the acetic acid induced writhing assay, VPA (300 mg/kg), ethosuximide (ETX, 300 mg/kg), morphine (MOR, 5 & 10 mg/kg), GBP (10, 30, and 60 mg/kg), TGB (15 mg/kg), levetiracetam (LEV, 300 mg/kg), felbamate (FBM, 80 mg/kg) and APAP (250 mg/kg) reduced writhing to ≤ 25% of vehicle-treated mice. In the tail flick test, MOR (1.25-5 mg/kg), AMI (15 mg/kg) and TGB (5 mg/kg) demonstrated significant antinociceptive effects. Finally, carbamazepine (CBZ, 20 and 50 mg/kg), VPA, MOR (2 and 4 mg/kg), AMI (12 mg/kg), TPM (100 mg/kg), lamotrigine (LTG, 40 mg/kg), GBP (60 mg/kg), TGB (15 mg/kg), FBM (35 mg/kg), and APAP (250 mg/kg) were effective in the PSNL model. Thus, TGB was the only prototype compound with significant analgesic effects in each of the four models, while AMI, GBP, APAP, and MOR each improved three of the four pain phenotypes. This study highlights the importance evaluating novel targets in a variety of pain phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ottman R et al (2011) Comorbidities of epilepsy: results from the Epilepsy Comorbidities and Health (EPIC) survey. Epilepsia 52(2):308–315

    PubMed  Google Scholar 

  2. Lipton RB et al (1994) Comorbidity of migraine: the connection between migraine and epilepsy. Neurology 44(10 Suppl 7):S28–S32

    CAS  PubMed  Google Scholar 

  3. Kessler RC et al (2012) Accounting for comorbidity in assessing the burden of epilepsy among US adults: results from the National Comorbidity Survey Replication (NCS-R). Mol Psychiatry 17(7):748–758

    Article  CAS  PubMed  Google Scholar 

  4. Wilner AN et al (2016) Analgesic opioid use in a health-insured epilepsy population during 2012. Epilepsy Behav. 57(Pt A):126–132

    Article  CAS  PubMed  Google Scholar 

  5. Max MB et al (1988) Amitriptyline, but not lorazepam, relieves postherpetic neuralgia. Neurology 38(9):1427–1432

    Article  CAS  PubMed  Google Scholar 

  6. Collins SL et al (2000) Antidepressants and anticonvulsants for diabetic neuropathy and postherpetic neuralgia: a quantitative systematic review. J Pain Symptom Manage 20(6):449–458

    Article  CAS  PubMed  Google Scholar 

  7. Pappagallo M (2003) Newer antiepileptic drugs: possible uses in the treatment of neuropathic pain and migraine. Clin Ther 25(10):2506–2538

    Article  CAS  PubMed  Google Scholar 

  8. McCleane G (2003) Pharmacological management of neuropathic pain. CNS Drugs 17(14):1031–1043

    Article  CAS  PubMed  Google Scholar 

  9. Shannon HE, Eberle EL, Peters SC (2005) Comparison of the effects of anticonvulsant drugs with diverse mechanisms of action in the formalin test in rats. Neuropharmacology 48(7):1012–1020

    Article  CAS  PubMed  Google Scholar 

  10. Backonja MM (2002) Use of anticonvulsants for treatment of neuropathic pain. Neurology 59(5 Suppl 2):S14–S17

    Article  PubMed  Google Scholar 

  11. Dickenson AH, Matthews EA, and Suzuki R (2002) Neurobiology of neuropathic pain: mode of action of anticonvulsants. Eur J Pain 6(Suppl A):51–60

    Article  CAS  PubMed  Google Scholar 

  12. Spina E, Perugi G (2004) Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 6(2):57–75

    PubMed  Google Scholar 

  13. Goodyear-Smith F, Halliwell J (2009) Anticonvulsants for neuropathic pain: gaps in the evidence. Clin J Pain 25(6):528–536

    Article  PubMed  Google Scholar 

  14. Smith M, Wilcox KS, White HS (2007) Discovery of antiepileptic drugs. Neurother 4(1):12–17

    Article  CAS  Google Scholar 

  15. Dixon WJ (1965) The up and down method for small samples. J Am Stat Assoc 60:967–978

    Article  Google Scholar 

  16. Leresche N et al (1998) On the action of the anti-absence drug ethosuximide in the rat and cat thalamus. J Neurosci 18(13):4842–4853

    CAS  PubMed  Google Scholar 

  17. Niespodziany I, Klitgaard H, Margineanu DG (2004) Is the persistent sodium current a specific target of anti-absence drugs? Neuroreport 15(6):1049–1052

    Article  CAS  PubMed  Google Scholar 

  18. Hunter JC et al (1997) The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur J Pharmacol 324(2–3):153–160

    Article  CAS  PubMed  Google Scholar 

  19. Paudel KR, Bhattacharya S, Rauniar GP, Das BP (2011) Comparison of antinociceptive effect of the antiepileptic drug gabapentin to that of various dosage combinations of gabapentin with lamotrigine and topiramate in mice and rats. J Neurosci Rural Pract 2(2):130–136

    Article  PubMed  PubMed Central  Google Scholar 

  20. Laughlin TM, Tram K, Wilcox GL, Birnbaum AK (2002) Comparison of antiepileptic drugs tiagabine, lamotrigine, and gabapentin in mouse models of acute, prolonged, and chronic nociception. J Pharmcol Exp Ther 302(3):1168–1175

    Article  CAS  Google Scholar 

  21. Barnes CD, Eltherington LG (1966) Drug dosage in laboratory animals—a handbook. University of California Press, Berkely

    Google Scholar 

  22. Coulter DA (2003) H-channels as a therapeutic target in epilepsy. Epilepsy Curr 3(5):164–165

    Article  PubMed  PubMed Central  Google Scholar 

  23. White HS, Rho JM (2010) In: White HS, Rho JM (ed) Mechanisms of action o antiepilepstic drugs, 1 edn. Professional Communications, Inc, West Islip

    Google Scholar 

  24. White HS, Smith MD, Wilcox KS (2007) Mechanisms of action of antiepileptic drugs. Int Rev Neurobiol 81:85–110

    Article  CAS  PubMed  Google Scholar 

  25. Thompson SM, Gahwiler BH (1992) Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J Neurophysiol 67(6):1698–1701

    CAS  PubMed  Google Scholar 

  26. Sutton KG et al (2002) Gabapentin inhibits high-threshold calcium channel currents in cultured rat dorsal root ganglion neurones. Br J Pharmacol 135(1):257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Coulter DA, DeLorenzo RJ (1999) Basic mechanisms of status epilepticus. Adv Neurol 79:725–733

    CAS  PubMed  Google Scholar 

  28. White HS (2003) Mechanism of action of newer anticonvulsants. J Clin Psychiatry 64(Suppl 8):5–8

    CAS  PubMed  Google Scholar 

  29. Reid C, Phillips AM, Petrou S, HCN (2012) channelopathies: pathophysiology in genetic epilepsy and therapeutic implications. Br J Pharmacol 165(1):49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lynch BA et al (2004) The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A 101(26):9861–9866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deshpande LS, Delorenzo RJ (2014) Mechanisms of levetiracetam in the control of status epilepticus and epilepsy. Front Neurol 5:11

    Article  PubMed  PubMed Central  Google Scholar 

  32. Berge OG (2011) Predictive validity of behavioural animal models for chronic pain. Br J Pharmacol 164(4):1195–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee IO et al (2000) Effects of different concentrations and volumes of formalin on pain response in rats. Acta Anaesthesiol Sin 38(2):59–64

    CAS  PubMed  Google Scholar 

  34. Tjolsen A et al (1992) The formalin test: an evaluation of the method. Pain 51(1):5–17

    Article  CAS  PubMed  Google Scholar 

  35. Dubuisson D, Dennis SG (1977) The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4(2):161–174

    Article  CAS  PubMed  Google Scholar 

  36. Dickenson AH, Sullivan AF (1987) Subcutaneous formalin-induced activity of dorsal horn neurones in the rat: differential response to an intrathecal opiate administered pre or post formalin. Pain 30(3):349–360

    Article  CAS  PubMed  Google Scholar 

  37. Puig S, Sorkin LS (1996) Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. Pain 64(2):345–355

    Article  CAS  PubMed  Google Scholar 

  38. Dickenson AH, Sullivan AF (1987) Peripheral origins and central modulation of subcutaneous formalin-induced activity of rat dorsal horn neurones. Neurosci Lett 83(1–2):207–211

    Article  CAS  PubMed  Google Scholar 

  39. Wheeler-Aceto H, Porreca F, Cowan A (1990) The rat paw formalin test: comparison of noxious agents. Pain 40(2):229–238

    Article  CAS  PubMed  Google Scholar 

  40. Coderre TJ et al (1993) The formalin test: a validation of the weighted-scores method of behavioural pain rating. Pain 54(1):43–50

    Article  CAS  PubMed  Google Scholar 

  41. Munro G (2007) Dopamine D(1) and D(2) receptor agonism enhances antinociception mediated by the serotonin and noradrenaline reuptake inhibitor duloxetine in the rat formalin test. Eur J Pharmacol 575(1–3):66–74

    Article  CAS  PubMed  Google Scholar 

  42. Urban Mo, Ren K, Park KT, Campbell B, Anker N, Stearns B, Aiyar J, Belley M, Cohen C, Bristow L (2005) Comparison of the antinociceptive profiles of gabapentin and 3-methylgabapentin in rat models of acute and persistent pain: implications for mechanism of action. J Pharmacol Exp Ther 313(3):1209–1216

    Article  CAS  PubMed  Google Scholar 

  43. Field MJ et al (1997) Gabapentin (neurontin) and S-(+)-3-isobutylgaba represent a novel class of selective antihyperalgesic agents. Br J Pharmacol 121(8):1513–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shimoyama N et al (1997) Spinal gabapentin is antinociceptive in the rat formalin test. Neurosci Lett 222(1):65–67

    Article  CAS  PubMed  Google Scholar 

  45. Carlton SM, Zhou S (1998) Attenuation of formalin-induced nociceptive behaviors following local peripheral injection of gabapentin. Pain 76(1–2):201–207

    Article  CAS  PubMed  Google Scholar 

  46. Stepanovic-Petrovic R, Tomin MA, Vuckovic SM, Paranos S, Ugresic ND, Prostran MS, Milovanovic S, Boskovic B (2008) The antinociceptive effects of anticonvulsants in a mouse visceral pain model. Anesth Analg 106(6):1897–1903

    Article  CAS  PubMed  Google Scholar 

  47. Satyanarayana PS, Jain N, Singh A, Kulkarni SK (2004) Isobolographic analysis of interaction between cyclooxygenase inhibitors and tramadol in acetic acid-induced writhing in mice. Prog Neuropsychopharmacol Biol Psychiatry 28(4):641–649

    Article  CAS  PubMed  Google Scholar 

  48. Giamberardino MA, Valente R, Affaitati G, Vecchiet L (1997) Central neuronal changes in recurrent visceral pain. Int J Clin Pharmacol Res 17(2–3):63–66

    CAS  PubMed  Google Scholar 

  49. Collier HO, Dinneen L, Johnson CA, Schneider C (1968) The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother 32(2):295–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feng Y, Cui M, Willis WD (2003) Gabapentin markedly reduces acetic acid-induced visceral nociception. Anesthesiology 98(3):729–733

    Article  CAS  PubMed  Google Scholar 

  51. Jones CK, Peters S, Shannon HE (2005) Efficacy of duloxetine, a potent and balanced serotonergic and noradrenergic reuptake inhibitor, in inflammatory and acute pain models in rodents. J Pharmacol Exp Ther 312(2):726–732

    Article  CAS  PubMed  Google Scholar 

  52. D’Amour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharmacol Exp Ther 72(1):74–79

    Google Scholar 

  53. Taber RI (1973) Predictive valuse of analgesic assays in mice and rats. Adv Biochem Psychopharmacol 8(0):191–211

    CAS  PubMed  Google Scholar 

  54. Chan CW, Dallaire M (1989) Subjective pain sensation is linearly correlated with the flexion reflex in man. Brain Res 479(1):145–150

    Article  CAS  PubMed  Google Scholar 

  55. Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53(4):597–652

    PubMed  Google Scholar 

  56. Gebhart GF, Ossipov MH (1986) Characterization of inhibition of the spinal nociceptive tail-flick reflex in the rat from the medullary lateral reticular nucleus. J Neurosci 6(3):701–713

    CAS  PubMed  Google Scholar 

  57. Ness TJ, Gebhart GF (1987) Quantitative comparison of inhibition of visceral and cutaneous spinal nociceptive transmission from the midbrain and medulla in the rat. J Neurophysiol 58(4):850–865

    CAS  PubMed  Google Scholar 

  58. Paudel KR et al (2007) Antinociceptive effect of amitriptyline in mice of acute pain models. Indian J Exp Biol 45(6):529–531

    CAS  PubMed  Google Scholar 

  59. Barton ME, Eberle EL, Shannon HE (2005) The antihyperalgesic effects of the T-type calcium channel blockers ethosuximide, trimethadione, and mibefradil. Eur J Pharmacol 521(1–3):79–85

    Article  CAS  PubMed  Google Scholar 

  60. Dewey WL et al (1969) The effect of narcotics and narcotic antagonists on the tail-flick response in spinal mice. J Pharm Pharmacol 21(8):548–550

    Article  CAS  PubMed  Google Scholar 

  61. Dewey WL et al (1970) The effect of various neurohumoral modulators on the activity of morphine and the narcotic antagonists in the tail-flick and phenylquinone tests. J Pharmacol Exp Ther 175(2):435–442

    CAS  PubMed  Google Scholar 

  62. McCormack K, Prather P, Chapleo C (1998) Some new insights into the effects of opioids in phasic and tonic nociceptive tests. Pain 78(2):79–98

    Article  CAS  PubMed  Google Scholar 

  63. Cecchi M et al (2008) Differential responses to morphine-induced analgesia in the tail-flick test. Behav Brain Res 194(2):146–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ardid D et al (2003) Antihyperalgesic effect of levetiracetam in neuropathic pain models in rats. Eur J Pharmacol 473(1):27–33

    Article  CAS  PubMed  Google Scholar 

  65. Basbaum AI, Fields HL (1978) Endogenous pain control mechanisms: review and hypothesis. Ann Neurol 4(5):451–462

    Article  CAS  PubMed  Google Scholar 

  66. Pakulska W (2007) Influence of tiagabine on the antinociceptive action of morphine, metamizole and indomethacin in mice. Acta Pol Pharm 64(3):263–270

    CAS  PubMed  Google Scholar 

  67. Kunchandy J, Kulkarni SK (1987) Naloxone-sensitive and GABAA receptor mediated analgesic response of benzodiazepines in mice. Methods Find Exp Clin Pharmacol 9(2):95–99

    CAS  PubMed  Google Scholar 

  68. Pakulska W, Czarnecka E (2004) The effect of gabapentin on antinociceptive action of analgesics. Acta Pol Pharm 61(5):393–400

    CAS  PubMed  Google Scholar 

  69. Woolf CJ, Mannion RJ (1999) Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353(9168):1959–1964

    Article  CAS  PubMed  Google Scholar 

  70. Woolf CJ, Salter MW (2000) Neuronal Plasticity: Increasing the Gain in Pain. Science 288(5472):1765–1768

    Article  CAS  PubMed  Google Scholar 

  71. Rogawski MA, Löscher W (2004) The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5(7):553–564

    Article  CAS  PubMed  Google Scholar 

  72. Jensen AA, Mosbacher J, Elg S, Lingenhoehl K, Lohmann T, Johansen TN, Abrahamsen B, Mattsson JP, Lehmann A, Bettler B, Bräuner-Osborne H (2002) The anticonvulsant gabapentin (neurontin) does not act through gamma-aminobutyric acid-B receptors. Mol Pharmacol 61(6):1377–1384

    Article  CAS  PubMed  Google Scholar 

  73. Tremont-Lukats IW, Megeff C, Backonja MM (2000) Anticonvulsants for neuropathic pain syndromes: mechanisms of action and place in therapy. Drugs 60(5):1029–1052

    Article  CAS  PubMed  Google Scholar 

  74. Kochar DK, Jain N, Agarwal RP, Srivastava T, Agarwal P, Gupta S (2002) Sodium valproate in the management of painful neuropathy in type 2 diabetes—a randomized placebo controlled study. Acta Neurol Scand 106(5):248–252

    Article  CAS  PubMed  Google Scholar 

  75. Kochar DK, Garg P, Bumb RA, Kochar SK, Mehta RD, Beniwal R, Rawat N (2005) Divalproex sodium in the management of post-herpetic neuralgia: a randomized double-blind placebo-controlled study. QJM 98(1):29–34

    Article  CAS  PubMed  Google Scholar 

  76. Otto M, Bach F, Jensen TS, Sindrup SH (2004) Valproic acid has no effect on pain in polyneuropathy: a randomized, controlled trial. Neurology 62(2):285–288

    Article  CAS  PubMed  Google Scholar 

  77. Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43(2):205–218

    Article  CAS  PubMed  Google Scholar 

  78. Jaggi AS, Jain V, Singh N (2011) Animal models of neuropathic pain. Fundam Clin Pharmacol 25(1):1–28

    Article  CAS  PubMed  Google Scholar 

  79. Wang LX, Wang Z (2003) Animal and cellular models of chronic pain. Adv Drug Deliv Rev 55(8):949–965

    Article  CAS  PubMed  Google Scholar 

  80. Brown JP, Gee NS (1998) Cloning and deletion mutagenesis of the alpha2 delta calcium channel subunit from porcine cerebral cortex. Expression of a soluble form of the protein that retains [3H]gabapentin binding activity. J Biol Chem 273(39):25458–25465

    Article  CAS  PubMed  Google Scholar 

  81. Argoff CE (2011) Review of current guidelines on the care of postherpetic neuralgia. Postgrad Med 123(5):134–142

    Article  PubMed  Google Scholar 

  82. Argoff C (2011) Mechanisms of pain transmission and pharmacologic management. Curr Med Res Opin 27(10):2019–2031

    Article  CAS  PubMed  Google Scholar 

  83. Dickenson AH, Ghandehari J (2007) Anti-convulsants and anti-depressants. Handb Exp Pharmacol 177:145–177

    Article  CAS  Google Scholar 

  84. Backonja MM (2000) Anticonvulsants (antineuropathics) for neuropathic pain syndromes. Clin J Pain 16(2 Suppl):S67–S72

    Article  CAS  PubMed  Google Scholar 

  85. Kremer M et al (2016) The antiallodynic action of pregabalin in neuropathic pain is independent from the opioid system. Mol Pain 12:1–12

    Article  CAS  Google Scholar 

  86. Dong XP et al (2006) Shp2 is dispensable in the formation and maintenance of the neuromuscular junction. Neurosignals 15(2):53–63

    Article  CAS  PubMed  Google Scholar 

  87. Hunter JC, Gogas K, Hedley LR, Jacobson LO, Kassotakis L, Thompson J, Fontana DJ (1997) The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur J Pharmacol 324(2–3):153–160

    Article  CAS  PubMed  Google Scholar 

  88. Chapman V et al (1998) Effects of systemic carbamazepine and gabapentin on spinal neuronal responses in spinal nerve ligated rats. Pain 75(2–3):261–272

    Article  CAS  PubMed  Google Scholar 

  89. Hadley GR, Gayle J, Ripoll J, Jones MR, Argoff CE, Kaye RJ, Kaye AD (2016) Post-herpetic neuralgia: a review. Curr Pain Headache Rep 20(3):17

    Article  PubMed  Google Scholar 

  90. Kalso E (2005) Sodium channel blockers in neuropathic pain. Curr Pharm Des 11(23):3005–3011

    Article  CAS  PubMed  Google Scholar 

  91. Silos-Santiago I (2008) The role of tetrodotoxin-resistant sodium channels in pain states: are they the next target for analgesic drugs? Curr Opin Investig Drugs 9(1):83–89

    CAS  PubMed  Google Scholar 

  92. M’Dahoma S et al (2014) Spinal cord transection-induced allodynia in rats–behavioral, physiopathological and pharmacological characterization. PLoS ONE 9(7):e102027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wiffen PJ, Derry S, Moore RA (2013) Lamotrigine for chronic neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev 12:CD006044

    Google Scholar 

  94. Rodriguez-Menendez V, Gilardini A, Bossi M, Canta A, Oggioni N, Carozzi V, Tremolizzo L, Cavaletti G. (2008) Valproate protective effects on cisplatin-induced peripheral neuropathy: an in vitro and in vivo study. Anticancer Res 28(1A):335–342

    CAS  PubMed  Google Scholar 

  95. Wieczorkiewicz-Plaza A, Plaza P, Maciejeswki R, Czuczwar M, Przesmycki K (2004) Effect of topiramate on mechanical allodynia in neuropathic pain model in rats. Pol J Pharmacol 56:275–278

    CAS  PubMed  Google Scholar 

  96. Giardina WJ, Dart M, Harris RR, Bitner RS, Radek RJ, Fox GB, Chemburkar SR, Marsh KC, Waring JF, Hui JY, Chen J, Curzon P, Grayson GK, Komater VA, Ku Y, Lockwood M, Miner HM, Nikkel AL, Pan JB, Pu YM, Wang L, Bennani Y, Durmuller N, Jolly R, Roux S, Sullivan JP, Decker MW (2005) Preclinical profiling and safety studies of ABT-769: a compound with potential for broad-spectrum antiepileptic activity. Epilepsia 46(9):1349–1361

    Article  CAS  PubMed  Google Scholar 

  97. Choi JI, Kim W, Yoon MH, Lee HG (2010) Antiallodynic effect of thalidomide and morphine on rat spinal nerve ligation-induced neuropathic pain. Korean J Pain 23(3):172–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee HG, Kim W, Yoon MH, Park AR, Choi JI (2013) Synergistic anti-allodynic effect between intraperitoneal thalidomide and morphine on rat spinal nerve ligation-induced neuropathic pain. Korean J Anesthesiol 65(4):331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhao C, Tall J, Meyer RA, Raja SN (2004) Antiallodynic effects of systemic and intrathecal morphine in the spared nerve injury model of neuropathic pain in rats. Anesthesiology 100(4):905–911

    Article  CAS  PubMed  Google Scholar 

  100. Smith MD et al (2008) Inhibition of the betaine-GABA transporter (mGAT2/BGT-1) modulates spontaneous electrographic bursting in the medial entorhinal cortex (mEC). Epilepsy Res 79(1):6–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Luszczki JJ, Kolacz A, Czuczwar M, Przesmycki K, Czuczwar SJ (2009) Synergistic interaction of gabapentin with tiagabine in the formalin test in mice: an isobolographic analysis. Eur J Pain 13(7):665–672

    Article  CAS  PubMed  Google Scholar 

  102. Luszczki JJ KA, Wojda E, Czuczwar M, Przesmycki K, Czuczwar SJ (2009) Synergistic interaction of gabapentin with tiagabine in the hot-plate test in mice: an isobolographic analysis. Pharmacol Rep 61(3):459–467

    Article  PubMed  Google Scholar 

  103. Giardina WJ, Decker M, Porsolt RD et al (2009) An evaluation of the GABA uptake blocker tiagabine in animal models of neuropathic and nociceptive pain. Drug Develop Res 44:106–113.

    Article  Google Scholar 

  104. Ipponi A, Lamberti C, Medica A et al (1999) Tiagabine antinociception in rodents depends on GABA(B) receptor activation: parallel antinociception testing and medial thalamus GABA microdialysis. Eur J Pharmacol 368:205–211

    Article  CAS  PubMed  Google Scholar 

  105. Novak V, Kanard R, Kissel JT et al (2001) Treatment of painful sensory neuropathy with tiagabine: a pilot study. Clin Auton Res 11:357–361

    Article  CAS  PubMed  Google Scholar 

  106. KS., M (2001) Use of tiagabine for neuropathic pain. Neurology 56(Suppl 3):A351

  107. DM., G (2003) Tiagabine for the management of pain in patients with co-morbid anxiety: a case series. J Pain 4(suppl 1):74

  108. Fijałkowski Ł, Salat K, Podkowa A, Zaręba P, Nowaczyk A (2017) Potential role of selected antiepileptics used in neuropathic pain as human GABA transporter isoform 1 (GAT1) inhibitors-Molecular docking and pharmacodynamic studies. Eur J Pharm Sci 96:362–372

    Article  PubMed  CAS  Google Scholar 

  109. Todorov AA, Kolchev C, Todorov AB (2005) Tiagabine and gabapentin for the management of chronic pain. Clin J Pain 21(4):358–361

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded under Contracts N01-NS-9-2313, N01-NS-4-2359, and HHSN271201100029C from the National Institute of Neurological Disorders and Stroke, Epilepsy Therapy Screening Program, National Institutes of Health, Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misty D. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, M.D., Woodhead, J.H., Handy, L.J. et al. Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain. Neurochem Res 42, 1995–2010 (2017). https://doi.org/10.1007/s11064-017-2286-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2286-9

Keywords

Navigation