Log in

Lithium Treatment Prevents Apoptosis in Neonatal Rat Hippocampus Resulting from Sevoflurane Exposure

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We aimed to observe the therapeutic effects of lithium on inhalational anesthetic sevoflurane-induced apoptosis in immature brain hippocampus. From postnatal day 5 (P5) to P28, male Sprague–Dawley pups were intraperitoneally injected with lithium chloride or 0.9 % sodium chloride. On P7 after the injection, pups were exposed to 2.3 % sevoflurane or air for 6 h. Brain tissues were harvested 12 h and 3 weeks after exposure. Cleaved caspase-3, nNOS protein, GSK-3β,p-GSK-3β were assessed by Western blot, and histopathological changes were assessed using Nissl stain and TUNEL stain. From P28, we used the eight-arm radial maze test and step-through test to evaluate the influence of sevoflurane exposure on the learning and memory of juvenile rats. The results showed that neonatal sevoflurane exposure induced caspase-3 activation and histopathological changes in hippocampus can be attenuated by lithium chloride. Sevoflurane increased GSK-3β activity while pretreatment of lithium decreased GSK-3β activity. Moreover, sevoflurane showed possibly slight but temporal influence on the spatial learning and the memory of juvenile rats, and chronic use of lithium chloride might have the therapeutic effect. Our current study suggests that lithium attenuates sevoflurane induced neonatal hippocampual damage by GSK-3β pathway and might improve learning and memory deficits in rats after neonatal exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goa KL, Noble S, Spencer CM (1999) Sevoflurane in paediatric anaesthesia: a review. Arch Neurol 1(2):127–153

    CAS  Google Scholar 

  2. Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M, Imaki J (2009) Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 110(3):628–637. doi:10.1097/ALN.0b013e3181974fa2

    Article  CAS  PubMed  Google Scholar 

  3. Piehl E, Foley L, Barron M, D’Ardenne C, Guillod P, Wise-Faberowski L (2010) The effect of sevoflurane on neuronal degeneration and GABAA subunit composition in a develo** rat model of organotypic hippocampal slice cultures. J Neurosurg Anesthesiol 22(3):220–229. doi:10.1097/ANA.0b013e3181e16c89

    Article  PubMed  Google Scholar 

  4. Zhang X, Xue Z, Sun A (2008) Subclinical concentration of sevoflurane potentiates neuronal apoptosis in the develo** C57BL/6 mouse brain. Neurosci Lett 447(2–3):109–114. doi:10.1016/j.neulet.2008.09.083

    Article  CAS  PubMed  Google Scholar 

  5. Dong Y, Zhang G, Zhang B, Moir RD, **a W, Marcantonio ER, Culley DJ, Crosby G, Tanzi RE, **e Z (2009) The common inhalational anesthetic sevoflurane induces apoptosis and increases beta-amyloid protein levels. Arch Neurol 66(5):620–631. doi:10.1001/archneurol.2009.48

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sun L (2010) Early childhood general anaesthesia exposure and neurocognitive development. Br J Anaesth 105(Suppl 1):i61–i68. doi:10.1093/bja/aeq302

    Article  PubMed  PubMed Central  Google Scholar 

  7. Feng X, Liu JJ, Zhou X, Song FH, Yang XY, Chen XS, Huang WQ, Zhou LH, Ye JH (2012) Single sevoflurane exposure decreases neuronal nitric oxide synthase levels in the hippocampus of develo** rats. Br J Anaesth 109(2):225–233. doi:10.1093/bja/aes121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li Q, Li H, Roughton K, Wang X, Kroemer G, Blomgren K, Zhu C (2010) Lithium reduces apoptosis and autophagy after neonatal hypoxia-ischemia. Cell Death Dis 1:e56. doi:10.1038/cddis.2010.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caldero J, Brunet N, Tarabal O, Piedrafita L, Hereu M, Ayala V, Esquerda JE (2010) Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord. Neuroscience 165(4):1353–1369. doi:10.1016/j.neuroscience.2009.11.034

    Article  CAS  PubMed  Google Scholar 

  10. Zhong J, Yang X, Yao W, Lee W (2006) Lithium protects ethanol-induced neuronal apoptosis. Biochem Biophys Res Commun 350(4):905–910. doi:10.1016/j.bbrc.2006.09.138

    Article  CAS  PubMed  Google Scholar 

  11. Straiko MM, Young C, Cattano D, Creeley CE, Wang H, Smith DJ, Johnson SA, Li ES, Olney JW (2009) Lithium protects against anesthesia-induced developmental neuroapoptosis. Anesthesiology 110(4):862–868. doi:10.1097/ALN.0b013e31819b5eab

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chuang DM (2005) The antiapoptotic actions of mood stabilizers: molecular mechanisms and therapeutic potentials. Ann N Y Acad Sci 1053:195–204. doi:10.1196/annals.1344.018

    Article  CAS  PubMed  Google Scholar 

  13. Rowe MK, Chuang DM (2004) Lithium neuroprotection: molecular mechanisms and clinical implications. Expert Rev Mol Med 6(21):1–18. doi:10.1017/S1462399404008385

    Article  PubMed  Google Scholar 

  14. Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32(4–5):577–595. doi:10.1007/s11064-006-9128-5

    Article  CAS  PubMed  Google Scholar 

  15. Zhu ZF, Wang QG, Han BJ, William CP (2010) Neuroprotective effect and cognitive outcome of chronic lithium on traumatic brain injury in mice. Brain Res Bull 83(5):272–277. doi:10.1016/j.brainresbull.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  16. Riadh N, Allagui MS, Bourogaa E, Vincent C, Croute F, Elfeki A (2011) Neuroprotective and neurotrophic effects of long term lithium treatment in mouse brain. Biometals 24(4):747–757. doi:10.1007/s10534-011-9433-6

    Article  CAS  PubMed  Google Scholar 

  17. Feng X, Liu JJ, Zhou X, Song FH, Yang XY, Chen XS, Huang WQ, Zhou LH, Ye JH (2012) Single sevoflurane exposure decreases neuronal nitric oxide synthase levels in the hippocampus of develo** rats. Br J Anaesth. doi:10.1093/bja/aes121

    PubMed  PubMed Central  Google Scholar 

  18. He FQ, Qiu BY, Zhang XH, Li TK, **e Q, Cui DJ, Huang XL, Gan HT (2011) Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-kappaB activation in a rat model of Alzheimer’s disease induced by amyloid-beta(1-42). Brain Res 1384:89–96. doi:10.1016/j.brainres.2011.01.103

    Article  CAS  PubMed  Google Scholar 

  19. Ren WJ, Liu Y, Zhou LJ, Li W, Zhong Y, Pang RP, **n WJ, Wei XH, Wang J, Zhu HQ, Wu CY, Qin ZH, Liu G, Liu XG (2011) Peripheral nerve injury leads to working memory deficits and dysfunction of the hippocampus by upregulation of TNF-alpha in rodents. Neuropsychopharmacol: official publication of the American College of Neuropsychopharmacology 36(5):979–992. doi:10.1038/npp.2010.236

    Article  CAS  Google Scholar 

  20. Liu Y, Zhuang X, Gou L, Ling X, Tian X, Liu L, Zheng Y, Zhang L, Yin X (2013) Protective effects of nizofenone administration on the cognitive impairments induced by chronic restraint stress in mice. Pharmacol Biochem Behav 103(3):474–480. doi:10.1016/j.pbb.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  21. Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL, Warner DO (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110(4):796–804. doi:10.1097/01.anes.0000344728.34332.5d

    Article  PubMed  PubMed Central  Google Scholar 

  22. DiMaggio C, Sun LS, Kakavouli A, Byrne MW, Li G (2009) A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J Neurosurg Anesthesiol 21(4):286–291. doi:10.1097/ANA.0b013e3181a71f11

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kalkman CJ, Peelen L, Moons KG, Veenhuizen M, Bruens M, Sinnema G, de Jong TP (2009) Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology 110(4):805–812. doi:10.1097/ALN.0b013e31819c7124

    Article  PubMed  Google Scholar 

  24. Flick RP, Katusic SK, Colligan RC, Wilder RT, Voigt RG, Olson MD, Sprung J, Weaver AL, Schroeder DR, Warner DO (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128(5):e1053–e1061. doi:10.1542/peds.2011-0351

    Article  PubMed  PubMed Central  Google Scholar 

  25. Berns M, Zacharias R, Seeberg L, Schmidt M, Kerner T (2009) Effects of sevoflurane on primary neuronal cultures of embryonic rats. Eur J Anaesthesiol 26(7):597–602

    Article  CAS  PubMed  Google Scholar 

  26. Pan Z, Lu XF, Shao C, Zhang C, Yang J, Ma T, Zhang LC, Cao JL (2011) The effects of sevoflurane anesthesia on rat hippocampus: a genomic expression analysis. Brain Res 1381:124–133. doi:10.1016/j.brainres.2011.01.020

    Article  CAS  PubMed  Google Scholar 

  27. Wada A, Yokoo H, Yanagita T, Kobayashi H (2005) Lithium: potential therapeutics against acute brain injuries and chronic neurodegenerative diseases. J Pharmacol Sci 99(4):307–321

    Article  CAS  PubMed  Google Scholar 

  28. Chuang DM, Chen RW, Chalecka-Franaszek E, Ren M, Hashimoto R, Senatorov V, Kanai H, Hough C, Hiroi T, Leeds P (2002) Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord 4(2):129–136

    Article  CAS  PubMed  Google Scholar 

  29. Jope RS (2003) Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24(9):441–443. doi:10.1016/S0165-6147(03)00206-2

    Article  CAS  PubMed  Google Scholar 

  30. Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK (2000) Enhancement of hippocampal neurogenesis by lithium. J Neurochem 75(4):1729–1734

    Article  CAS  PubMed  Google Scholar 

  31. Luo CX, Zhu XJ, Zhou QG, Wang B, Wang W, Cai HH, Sun YJ, Hu M, Jiang J, Hua Y, Han X, Zhu DY (2007) Reduced neuronal nitric oxide synthase is involved in ischemia-induced hippocampal neurogenesis by up-regulating inducible nitric oxide synthase expression. J Neurochem 103(5):1872–1882. doi:10.1111/j.1471-4159.2007.04915.x

    Article  CAS  PubMed  Google Scholar 

  32. Weitzdoerfer R, Hoeger H, Engidawork E, Engelmann M, Singewald N, Lubec G, Lubec B (2004) Neuronal nitric oxide synthase knock-out mice show impaired cognitive performance. Nitric Oxide 10(3):130–140. doi:10.1016/j.niox.2004.03.007S1089860304000588

    Article  CAS  PubMed  Google Scholar 

  33. Tanda K, Nishi A, Matsuo N, Nakanishi K, Yamasaki N, Sugimoto T, Toyama K, Takao K, Miyakawa T (2009) Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice. Mol Brain 2:19. doi:10.1186/1756-6606-2-19

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu XS, Xue QS, Zeng QW, Li QA, Liu JA, Feng XM, Yu BW (2010) Sevoflurane impairs memory consolidation in rats, possibly through inhibiting phosphorylation of glycogen synthase kinase-3 beta in the hippocampus. Neurobiol Learn Mem 94(4):461–467. doi:10.1016/j.nlm.2010.08.011

    Article  CAS  PubMed  Google Scholar 

  35. Wiklund A, Granon S, Faure P, Sundman E, Changeux JP, Eriksson LI (2009) Object memory in young and aged mice after sevoflurane anaesthesia. NeuroReport 20(16):1419–1423. doi:10.1097/Wnr.0b013e328330cd2b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by National Natural Science Foundation of China, Grant No. 81571032 and Guangdong Science Technology Planning Project, Grant No. 2013B051000045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **a Feng.

Ethics declarations

Conflicts of Interests

There is no conflict of interest in this work.

Ethical approval

All applicable international, national, and Institutional Animal Care and Use Committee at Sun Yat-sen University (Guangzhou, Guangdong, China; No. [2014]A-073) guidelines for the care and use of animals were followed.

Additional information

Xue Zhou and Wen-da Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., da Li, W., Yuan, BL. et al. Lithium Treatment Prevents Apoptosis in Neonatal Rat Hippocampus Resulting from Sevoflurane Exposure. Neurochem Res 41, 1993–2005 (2016). https://doi.org/10.1007/s11064-016-1909-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1909-x

Keywords

Navigation