Log in

Genistein alleviates the mitochondria-targeted DNA damage induced by β-amyloid peptides 25–35 in C6 glioma cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) are mainly produced by mitochondria which can cause oxidative stress. It has been considered that mitochondrial damage induced by oxidative stress is related to Alzheimer’s disease (AD). Besides, mitochondrial DNA (mtDNA) is more vulnerable to oxidative damage than other biomacromolecules, causing serious dysfunction to mitochondria. β-amyloid peptides (Aβ) is a main factor responsible for the occurence and development of AD. Astrocytes is an important target cell for Aβ’ toxicity and can be activated to neglect their normal fountain in the central nervous system. Genistein (Gen), a main active ingredient of soybean isoflavone, has been shown to have neuroprotective effects by antagonizing oxidative damage induced by Aβ. Thus, in the present study, we evaluated Aβ25–35 induced mitochondrial DNA (mtDNA) damage and the protective effect of Gen in C6 glioma cells (C6 cells). The study design was consisted of four groups: control group (vehicle), Aβ group treated with Aβ25–35, Gen + Aβ group treated with Gen + Aβ25–35 and Gen group treated with Gen only. C6 cells were pre-incubated with or without Gen (50 μM) for 2 h followed by the incubation with Aβ25–35 (25 μM) for another 24 h. Then the cells were harvested and processed to perform the analysis according to protocols. The mitochondrial ROS in C6 cells were measured by fluorescence spectrometer. Enzyme-linked immunosorbent assay (ELISA) was used to detect the mitochondrial reduced glutathione (GSH) and oxidized glutathione (GSSG) in C6 cells, then the ratio of GSH and GSSG was calculated. The levels of 8-hydroxydeoxyguanosine (8-OHdG) in C6 cells was also detected by ELISA. In addition, mtDNA deletion was detected by polymerase chain reaction (PCR). The mRNA and protein expression of 8-oxoguanine DNA glycosylase (OGG1) in both C6 cells and its mitochondria, and manganese superoxide dismutase (MnSOD) in mitochondria were detected by using reverse transcription-PCR and Western blot. The results showed that the increased mitochondrial ROS accumulation in C6 cells induced by Aβ was profoundly reversed by pre-treaded with Gen (p < 0.05). The ratio of GSH and GSSG in mitochondria was significantly increased in both Gen + Aβ group and Gen group compared with Aβ group (p < 0.05). The levels of 8-OHdG in C6 cells and mtDNA deletion were decreased after pre-treated with Gen (p < 0.05). Gen could also up-regulate the mRNA and protein expression of OGG1 in both C6 cells and its mitochondria and mitochondrial MnSOD compared with the Aβ group (p < 0.05). These results confirmed that Gen could alleviate the mitochondria-targeted oxidative damage induced by β-amyloid 25–35 in C6 cells which might be useful for the treatment of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dumont M, Beal MF (2011) Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med 51:1014–1026

    Article  PubMed  CAS  Google Scholar 

  2. Castro Mdel R, Suarez E, Kraiselburd E, Isidro A, Paz J, Ferder L, Ayala-Torres S (2012) Aging increases mitochondrial DNA damage and oxidative stress in liver of rhesus monkeys. Exp Gerontol 47:29–37

    Article  PubMed  Google Scholar 

  3. Chakrabarti S, Munshi S, Banerjee K, Thakurta IG, Sinha M, Bagh MB (2011) Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation. Aging Dis 2:242–256

    PubMed  Google Scholar 

  4. Filosto M, Scarpelli M, Cotelli MS, Vielmi V, Todeschini A, Gregorelli V, Tonin P, Tomelleri G, Padovani A (2011) The role of mitochondria in neurodegenerative diseases. J Neurol 258:1763–1774

    Article  PubMed  CAS  Google Scholar 

  5. Yan MH, Wang X, Zhu X (2012) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2012.11.014

  6. Abeti R, Abramov AY, Duchen MR (2011) Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain 134:1658–1672

    Article  PubMed  Google Scholar 

  7. Cavallucci V, D’Amelio M, Cecconi F (2012) Aβ toxicity in Alzheimer’s disease. Mol Neurobiol 45:366–378

    Article  PubMed  CAS  Google Scholar 

  8. Reddy PH (2009) Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp Neurol 218:286–292

    Article  PubMed  CAS  Google Scholar 

  9. Aliev G, Palacios HH, Walrafen B, Lipsitt AE, Obrenovich ME, Morales L (2009) Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease. Int J Biochem Cell Biol 41:1989–2004

    Article  PubMed  CAS  Google Scholar 

  10. Ma WW, **ang L, Yu HL, Yuan LH, Guo AM, **ao YX, Li L, **ao R (2009) Neuroprotection of soyabean isoflavone co-administration with folic acid against beta-amyloid 1–40-induced neurotoxicity in rats. Br J Nutr 102:502–505

    Article  PubMed  CAS  Google Scholar 

  11. ** YD, Yu HL, Ma WW, Ding BJ, Ding J, Yuan LH, Feng JF, **ao R (2011) Genistein inhibits mitochondrial-targeted oxidative damage induced by beta-amyloid peptide 25–35 in PC12 cells. J Bioenerg Biomembr 43:399–407

    Article  PubMed  CAS  Google Scholar 

  12. Feng JF, He LL, Li D, Yuan LH, Yu HL, Ma WW, Yang Y, ** YD, Ding J, **ao YX, **ao R (2012) Antagonizing effects of soybean isoflavones on β-amyloid peptide-induced oxidative damage in neuron mitochondria of rats. Basic Clin Phar Macol Toxicol 111(4):248–253

    CAS  Google Scholar 

  13. Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, Van Eldik LJ, Norris CM (2012) Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci 32(46):16129–16140

    Article  PubMed  CAS  Google Scholar 

  14. Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61:1672–1676

    Article  PubMed  CAS  Google Scholar 

  15. Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406

    PubMed  CAS  Google Scholar 

  16. Slemmer JE, Shacka JJ, Sweeney MI, Weber JT (2008) Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem 15:404–414

    Article  PubMed  CAS  Google Scholar 

  17. Thal DR (2012) The role of astrocytes in amyloid β-protein toxicity and clearance. Exp Neurol 236:1–5

    Article  PubMed  CAS  Google Scholar 

  18. Steele ML, Robinson SR (2012) Reactive astrocytes give neurons less support: implications for Alzheimer’s disease. Neurobiol Aging 33:423.e1–423.e13

    Article  CAS  Google Scholar 

  19. Liang HW, Qiu SF, Shen J (2008) Genistein attenuates oxidative stress and neuronal damage following transient global cerebral ischemia in rat hippocampus. Neurosci Lett 438:116–120

    Article  PubMed  CAS  Google Scholar 

  20. Valles SL, Dolz-Gaiton P, Gambini J, Borras C, Lloret A, Pallardo FV, Viña J (2010) Estradiol or genistein prevent Alzheimer’s disease-associated inflammation correlating with an increase PPAR gamma expression in cultured astrocytes. Brain Res 1312:138–144

    Article  PubMed  CAS  Google Scholar 

  21. Yu HL, Li L, Zhang XH, **ang L, Zhang J, Feng JF, **ao R (2009) Neuroprotective effects of genistein and folic acid on apoptosis of rat cultured cortical neurons induced by beta-amyloid 31–35. Br J Nutr 102:655–662

    Article  PubMed  CAS  Google Scholar 

  22. Hsieh HM, Wu WM, Hu ML (2011) Genistein attenuates d-galactose-induced oxidative damage through decreased reactive oxygen species and NF-κB binding activity in neuronal PC12 cells. Life Sci 88:82–88

    Article  PubMed  CAS  Google Scholar 

  23. Caccamo D, Campisi A, Currò M, Bramanti V, Tringali M, Li Volti G, Vanella A, Ientile R (2005) Antioxidant treatment inhibited glutamate-evoked NF-kappaB activation in primary astroglial cellcultures. Neurotoxicology 26:915–921

    Article  PubMed  CAS  Google Scholar 

  24. Moreira PI, Zhu X, Wang X, Lee HG, Nunomura A, Petersen RB, Perry G, Smith MA (2010) Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta 1802:212–220

    Article  PubMed  CAS  Google Scholar 

  25. Trifunovic A, Larsson NG (2008) Mitochondrial dysfunction as a cause of ageing. J Intern Med 263:167–178

    Article  PubMed  CAS  Google Scholar 

  26. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  27. Pereira MD, Ksiazek K, Menezes R (2012) Oxidative stress in neurodegenerative diseases and ageing. Oxid Med Cell Longev 2012:796360

    Article  PubMed  Google Scholar 

  28. Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239

    Article  PubMed  CAS  Google Scholar 

  29. Tam JH, Pasternak SH (2012) Amyloid and Alzheimer’s disease: inside and out. Can J Neurol Sci 39:286–298

    PubMed  Google Scholar 

  30. Tillement L, Lecanu L, Papadopoulos V (2011) Alzheimer’s disease: effects of β-amyloid on mitochondria. Mitochondrion 11:13–21

    Article  PubMed  CAS  Google Scholar 

  31. Dixon RA, Ferreira D (2002) Genistein. Phytochemistry 60:205–211

    Article  PubMed  CAS  Google Scholar 

  32. Zielonka J, Gebicki J, Grynkiewicz G (2003) Radical scavenging properties of genistein. Free Radic Biol Med 35:958–965

    Article  PubMed  CAS  Google Scholar 

  33. Choi JS, Song J (2009) Effect of genistein on insulin resistance, renal lipid metabolism, and antioxidative activities in ovariectomized rats. Nutrition 25:676–685

    Article  PubMed  CAS  Google Scholar 

  34. Vendelbo MH, Nair KS (2011) Mitochondrial longevity pathways. Biochim Biophys Acta 1813:634–644

    Article  PubMed  CAS  Google Scholar 

  35. Orozco-Ibarra M, Estrada-Sánchez AM, Massieu L, Pedraza-Chaverrí J (2009) Heme oxygenase-1 induction prevents neuronal damage triggered during mitochondrial inhibition: role of CO and bilirubin. Int J Biochem Cell Biol 41:1304–1314

    Article  PubMed  CAS  Google Scholar 

  36. Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322:254–262

    Article  PubMed  CAS  Google Scholar 

  37. Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, diseases and ageing. Trends Biochem Sci 25:502–508

    Article  PubMed  CAS  Google Scholar 

  38. Bowling AC, Beal MF (1995) Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci 56:1151–1171

    Article  PubMed  CAS  Google Scholar 

  39. Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F (2008) Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev 60:1471–1477

    Article  PubMed  CAS  Google Scholar 

  40. Hegde ML, Mantha AK, Hazra TK, Bhakat KK, Mitra S, Szczesny B (2012) Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases. Mech Ageing Dev 133:157–168

    Article  PubMed  CAS  Google Scholar 

  41. Barreto GE, Gonzalez J, Torres Y, Morales L (2011) Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 71:107–113

    Article  PubMed  Google Scholar 

  42. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:120–139

    Article  PubMed  CAS  Google Scholar 

  43. Ruchko MV, Gorodnya OM, Zuleta A, Pastukh VM, Gillespie MN (2011) The DNA glycosylase Ogg1 defends against oxidant-induced mtDNA damage and apoptosis in pulmonary artery endothelial cells. Free Radic Biol Med 50:1107–1113

    Article  PubMed  CAS  Google Scholar 

  44. Nogami M, Shiga J, Inuzuka N, Takatsu A (2002) Age-associated decrease in 8-hydroxy-2′-deoxyguanosine (8-OHdG) immunoreactivity in the autopsied brain. Leg Med (Tokyo) 4:29–33

    Article  CAS  Google Scholar 

  45. Krishnan KJ, Ratnaike TE, De Gruyter HL, Jaros E, Turnbull DM (2012) Mitochondrial DNA deletions cause the biochemical defect observed in Alzheimer’s disease. Neurobiol Aging 33:2210–2214

    Article  PubMed  CAS  Google Scholar 

  46. Chiaratti MR, Meirelles FV, Wells D, Poulton J (2011) Therapeutic treatments of mtDNA diseases at the earliest stages of human development. Mitochondrion 11:820–828

    Article  PubMed  CAS  Google Scholar 

  47. Cline SD (2012) Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochim Biophys Acta 1819:979–991

    Article  PubMed  CAS  Google Scholar 

  48. Markaryan A, Nelson EG, Hinojosa R (2009) Quantification of the mitochondrial DNA common deletion in presbycusis. Laryngoscope 119:1184–1189

    Article  PubMed  CAS  Google Scholar 

  49. Cassano P, Lezza AM, Leeuwenburgh C, Cantatore P, Gadaleta MN (2004) Measurement of the 4,834-bp mitochondrial DNA deletion level in aging rat liver and brain subjected or not to caloric restriction diet. Ann N Y Acad Sci 1019:269–273

    Article  PubMed  CAS  Google Scholar 

  50. Zhong Y, Hu YJ, Yang Y, Peng W, Sun Y, Chen B, Huang X, Kong WJ (2011) Contribution of common deletion to total deletion burden in mitochondrial DNA from inner ear of d-galactose-induced aging rats. Mutat Res 712:11–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the National Natural Science Foundation of China (No.30972470, 30771802), the grants from the National High Technology Research and Development Programme (863 Programme) of China (No.2010AA023003), and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Bei**g Municipality (PHR201006112).

Conflict of interest

The authors declared none conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong **ao.

Additional information

Wei-wei Ma and Cheng-cheng Hou have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Ww., Hou, Cc., Zhou, X. et al. Genistein alleviates the mitochondria-targeted DNA damage induced by β-amyloid peptides 25–35 in C6 glioma cells. Neurochem Res 38, 1315–1323 (2013). https://doi.org/10.1007/s11064-013-1019-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1019-y

Keywords

Navigation