Log in

Effects of a Nociceptin Receptor Antagonist on Experimentally Induced Scratching Behavior in Mice

  • Published:
Neurophysiology Aims and scope

Itch and pain are two distressing sensations sharing a lot in common. In addition to the periphery, the central nervous system is proposed as a therapeutic target for the development of antipruritic drugs. The contribution of the most recently discovered opioid peptide, nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) in pain transmission is controversial. It seems to be pronociceptive when given supraspinally, but elicits an antinociceptive action when injected spinally. Here, we examined whether the N/OFQ system plays a role in experimentally induced pruritus. Scratching behavior was produced by intradermal administration of serotonin (50 μg/50 μl/mouse) or nociceptin (30 nmol/50 μl/mouse) to Balb/c mice. JTC-801 (1, 3 or 10 mg/kg, i.p.), a NOP receptor antagonist, attenuated both serotonin- and nociceptin-induced scratches. When given intradermally, JTC-801 (100 nmol) significantly reduced serotonin-induced but not nociceptin-induced scratches. We propose that antagonizing NOP receptors either systemically or localy may be a novel approach in the development of antipruritic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ikoma, F. Cevikbas, C. Kempkes, and M. Steinhoff, “Anatomy and neurophysiology of pruritus,” Semin. Cutan. Med. Surg., 30, No. 2, 64-70 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Davidson and G. J. Giesler, “The multiple pathways for itch and their interactions with pain,” Trends Neurosci., 33, No. 12, 550-558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Schmelz, “Itch and pain,” Neurosci. Biobehav. Rev., 34, No. 2, 171-176 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. A. Ikoma, M. Steinhoff, S. Stander, et al., “The neurobiology of itch,” Nat. Rev. Neurosci., 7, No. 7, 535-547 (2006).

  5. Y. Gotoh, Y. Omori, T. Andoh, and Y. Kuraishi, “Tonic inhibition of allergic itch signaling by the descending noradrenergic system in mice,” J. Pharmacol. Sci., 115, No. 3, 417-420 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. S. E. Ross, “Pain and itch: insights into the neural circuits of aversive somatosensation in health and disease,” Current Opin. Neurobiol., 21, No. 6, 880-887 (2011).

    Article  CAS  Google Scholar 

  7. F. Cevikbas, M. Steinhoff, and A. Ikoma, “Role of spinal neurotransmitter receptors in itch: new insights into therapies and drug development,” CNS Neurosci. Ther., 17, No. 6, 742-749 (2011).

    Article  PubMed  Google Scholar 

  8. Y. Kuraishi, “Potential new therapeutic targets for pathological pruritus,” Biol. Pharm. Bull., 36, No. 8, 1228-1234 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. M. M. Heinricher, “Nociceptin/orphanin FQ: Pain, stress and neural circuits,” Life Sci., 77, No. 25, 3127-3132 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. J. Mika, I. Obara, and B. Przewlocka, “The role of nociceptin and dynorphin in chronic pain: Implications of neuro-glial interaction,” Neuropeptides, 45, No. 4, 247-261 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. M. Inoue, M. Kobayashi, S. Kozaki, et al., “Nociceptin/orphanin FQ-induced nociceptive responses through substance P release from peripheral nerve endings in mice,” Proc. Natl. Acad. Sci. USA, 95, No. 18, 10949-10953 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. T. Sakurada, T. Komatsu, T. Moriyama, et al., “Effects of intraplantar injections of nociceptin and its N-terminal fragments on nociceptive and desensitized responses induced by capsaicin in mice,” Peptides, 26, No. 12, 2505-2512 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. M. C. H. Ko, N. N. Naughton, J. R. Traynor, et al., “Orphanin FQ inhibits capsaicin-induced thermal nociception in monkeys by activation of peripheral ORL1 receptors,” Brit. J. Pharmacol., 135, No. 4, 943-950 (2002).

    Article  CAS  Google Scholar 

  14. Y. A. Kolesnikov and G. W. Pasternak, “Peripheral orphanin FQ/nociceptin analgesia in the mouse,” Life Sci., 64, No. 22, 2021-2028 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. G. M. Scoto, G. Arico, S. Ronsisvalle, and C. Parenti, “Effects of intraplantar nocistatin and (+/-)-J 113397 injections on nociceptive behavior in a rat model of inflammation,” Pharmacol. Biochem. Behav., 100, No. 3, 639-644 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. T. Andoh, Y. Yageta, H. Takeshima, and Y. Kuraishi, “Intradermal nociceptin elicits itch-associated responses through leukotriene B-4 in mice,” J. Invest. Dermatol., 123, No. 1, 196-201 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. T. Sakurada, S. Katsuyama, S. Sakurada, et al., “Nociceptin-induced scratching, biting and licking in mice: involvement of spinal NK1 receptors,” Brit. J. Pharmacol., 127, No. 7, 1712-1718 (1999).

    Article  CAS  Google Scholar 

  18. N. C. Tosun, O. Gunduz, and A. Ulugol, “Attenuation of serotonin-induced itch responses by inhibition of endocannabinoid degradative enzymes, fatty acid amide hydrolase and monoacylglycerol lipase,” J. Neural. Transm., 122, No. 3, 363-367 (2014).

    Article  PubMed  Google Scholar 

  19. G. Saglam, O. Gunduz, and A. Ulugol, “Blockade of cannabinoid CB1 and CB2 receptors does not prevent the antipruritic effect of systemic paracetamol,” Acta Neurol. Belg., 114, No. 4, 307-309 (2014).

    Article  PubMed  Google Scholar 

  20. M. Sandrini, G. Vitale, L. A. Pini, et al., “Nociceptin/orphanin FQ prevents the antinociceptive action of paracetamol on the rat hot plate test,” Eur. J. Pharmacol., 507, Nos. 1/3, 43-48 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. I. H. Ertin, O. Gunduz, and A. Ulugol, “Contribution of nociceptin/orphanin FQ receptors to the anti-nociceptive and hypothermic effects of dipyrone,” Acta Neuropsychiatr., 27, No. 1, 48-52 (2015).

    Article  PubMed  Google Scholar 

  22. T. V. Khroyan, W. E. Polgar, J. Orduna, et al., “Differential effects of nociceptin/orphanin FQ (NOP) receptor agonists in acute versus chronic pain: studies with bifunctional NOP/mu receptor agonists in the sciatic nerve ligation chronic pain model in mice,” J. Pharmacol. Exp. Ther., 339, No. 2, 687-693 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O. Gunduz, H. C. Karadag, and A. Ulugol, “Synergistic anti-allodynic effects of nociceptin/orphanin FQ and cannabinoid systems in neuropathic mice,” Pharmacol. Biochem. Behav., 99, No. 4, 540-544 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. H. Yamada, H. Nakamoto, Y. Suzuki, et al., “Pharmacological profiles of a novel opioid receptor-like1 (ORL1) receptor antagonist, JTC-801,” Brit. J. Pharmacol., 135, No. 2, 323-332 (2002).

    Article  CAS  Google Scholar 

  25. H. Tamai, S. Sawamura, K. Takeda, et al., “Anti-allodynic and anti-hyperalgesic effects of nociceptin receptor antagonist, JTC-801, in rats after spinal nerve injury and inflammation,” Eur. J. Pharmacol., 510, No. 3, 223-228 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. R. Bigoni, S. Giuliani, G. Calo, et al., “Characterization of nociceptin receptors in the periphery: in vitro and in vivo studies,: N-S Arch. Pharmacol., 359, No. 3, 160-167 (1999).

  27. C. Mollereau and L. Mouledous, “Tissue distribution of the opioid receptor-like (ORL1) receptor,” Peptides, 21, No. 7, 907-917 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. M. Inoue, I. Shimohira, A. Yoshida, et al., “Dose-related opposite modulation by nociceptin/orphanin FQ of substance P nociception in the nociceptors and spinal cord,” J. Pharmacol. Exp. Ther., 291, No. 1, 308-313 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ulugol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duvan Aydemir, K., Gunduz, O. & Ulugol, A. Effects of a Nociceptin Receptor Antagonist on Experimentally Induced Scratching Behavior in Mice. Neurophysiology 49, 130–134 (2017). https://doi.org/10.1007/s11062-017-9641-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9641-y

Keywords

Navigation