Log in

Basic and Superordinate Image Categorization. Influences of the Extent of Congruence and the Time Parameters of Presentation of the Preceding Stimulus

  • Physiology of Higher Nervous (Cognitive) Activity in Humans
  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Studies using a direct masking model addressed the influences of the time characteristics of masker presentation on the performance of basic and superordinate categorization (BC and SC) of images of objects in healthy young subjects. Maskers could be congruent, incongruent, or semantically neutral with respect to the target image. The first series analyzed the effect of asynchrony in the onset of stimulus presentation (stimulus onset asynchrony, SOA, i.e., the time interval between the onset of masker and stimulus presentations), which varied from 100 to 350 msec in 50-msec steps with a constant masker duration of 100 msec. The second series analyzed the effect of masker duration, which increased from 100 to 250 msec in steps of 50 msec with a constant SOA of 250 msec. SC was found to occur faster than BC. This is presumptively due to the participation of the low-frequency component of the stimulus description in SC, this component being transmitted rapidly via the magnocellular visual pathway. BC was more sensitive than SC to the temporal characteristics of the masker and its categorical affiliation. Furthermore, changes in SOA had a greater effect than masker duration on reaction time. If we accept the suggestion that changes in SOA influence the early perceptual stage of stimulus processing, then its sensitivity to unimportant information is apparent as a stronger dependence of BC than SC on SOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashtiani, M. N., Kheradpisheh, S. R., Masquelier, T., and Ganjtabesh, M., “Object categorization in finer levels relies more on higher spatial frequencies and takes longer,” Front. Psychol., 8, 1261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlson, T. A., Ritchie, B., Kriegeskorte, N., et al., “Reaction time for object categorization is predicted by representational distance,” J. Cogn. Neurosci., 26, No. 10, 132–142 (2014).

    Article  PubMed  Google Scholar 

  • Codispoti, M., Ferrari, V., De Cesarei, A., and Cardinale, R., “Implicit and explicit categorization of natural scenes,” Prog. Brain Res., 156, 53–65 (2006).

    Article  PubMed  Google Scholar 

  • Cohen, M. A., Alvarez, G. A., Nakayama, K., and Konkle, T., “Visual search for object categories is predicted by the representational architecture of high-level visual cortex,” J. Neurophysiol., 117, 388–402 (2017).

    Article  PubMed  Google Scholar 

  • Cohen, M. A., Konkle, T., Rhee, J. Y., et al., “Processing multiple visual objects is limited by overlap in neural channels,” Proc. Natl. Acad. Sci. USA, 111, No. 24, 8955–8960 (2014).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  • Connolly, A. C., Guntupalli, J. S., Gors, J., et al., “The representation of biological classes in the human brain,” J. Neurosci., 32, No. 8, 2608–2618 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Contini, E. W., Goddard, E., and Wardle, S. G., “Reaction times predict dynamic brain representations measured with MEG for only some object categorization tasks,” Neuropsychology, 151, 107687 (2021).

    Article  Google Scholar 

  • Davis, T. and Poldrack, R. A., “Quantifying the internal structure of categories using a neural typicality measure,” Cereb. Cortex, 24, 1720–1737 (2014).

    Article  PubMed  Google Scholar 

  • Eddy, M. D. and Holcomb, P. J., “The temporal dynamics of masked repetition picture priming effects: manipulations of stimulus-onset asynchrony (SOA) and prime duration,” Brain Res., 1340, 24–39 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabre-Thorpe, M., “The characteristics and limits of rapid visual categorization,” Front. Psychol., 2, 243 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Farzmahdi, A., Fallah, F., Rajimehr, R., and Ebrahimpour, R., “Taskdependent neural representations of visual object categories,” Eur. J. Neurosci., 54, 6445–6462 (2021).

    Article  PubMed  Google Scholar 

  • Gerasimenko, N. Yu., Kushnir, A. B., and Mikhailova, E. S., “Masking effects of irrelevant visual information in conditions of basic and superordinate categorization of complex images,” Fiziol. Cheloveka, 45, No. 1, 5–18 (2019).

    Google Scholar 

  • Grill-Spector, K. and Weiner, K. S., “The functional architecture of the ventral temporal cortex and its role in categorization,” Nat. Rev. Neurosci., 15, No. 8, 536–548 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hantsch, A., Jescheniak, J. D., and Mädebach, A., “Naming and categorizing objects: Task differences modulate the polarity of semantic effects in the picture-word interference paradigm,” Mem. Cognit., 40, 760–768 (2012).

    Article  PubMed  Google Scholar 

  • Huth, A. G., Nishimoto, S., Vu, A. T., and Gallant, J., “A continuous semantic space describes the representation of thousands of object and action categories across the human brain,” Neuron, 76, 1210–1224 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, Z., Qu, Y., **ao, Y., et al., “Comparison of affective and semantic priming in different SOA,” Cogn. Process., 17, 357–375 (2016).

    Article  PubMed  Google Scholar 

  • Kalinin, S. A., Gerasimenko, N. Yu., Slavutskaya, A. V., and Mikhailova, E. S., “Behavioral and electrographic characteristics of recognition of complex images under conditions of direct masking. Effect of categorical proximity of target and masking stimuli,” Fiziol. Cheloveka, 40, No. 4, 5–17 (2014).

    PubMed  CAS  Google Scholar 

  • Ko, P. C., Duda, B., Husseya, E. P., et al., “The temporal dynamics of visual object priming,” Brain Cogn., 91, 11–20 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Koivisto, M. and Rientamo, E., “Unconscious vision spots the animal but not the dog: Masked priming of natural scenes,” Conscious. Cogn., 41, 10–23 (2016).

    Article  PubMed  Google Scholar 

  • Kutas, M. and Federmeier, K. D., “Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP),” Annu. Rev. Psychol., 62, No. 1, 621–647 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakoff, G., Women, Fire and Dangerous Things: What Categories Reveal about the Mind [Russian translation], Languages of Slavic Cultures Press, Moscow (2004).

  • Long, B., Yu, C. P., and Konkle, T., “Mid-level visual features underlie the high-level categorical organization of the ventral stream,” Proc. Natl. Acad. Sci. USA, 115, No. 38, E9015–E9024 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mace, M. J. M., Joubert, O. R., Nespoulous, J. L., and Fabre-Thorpe, M., “The time-course of visual categorizations: You spot the animal faster than the bird,” PLoS One, 4, No. 6, e5927 (2009).

  • Macknik, S. L. and Livingstone, M. S., “Neuronal correlates of visibility and invisibility in the primate visual system,” Nature Neurosci., 1, No. 2, 144–149 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Macknik, S. L. and Martinez-Conde, S., “The spatial and temporal effects of lateral inhibitory networks and their relevance to the visibility of spatiotemporal edges,” Neurocomputing, 58–60, 775–782 (2004).

    Article  Google Scholar 

  • Macknik, S. L., “Visual masking approaches to visual awareness,” Prog. Brain Res., 155, 177–215 (2006).

    Article  PubMed  Google Scholar 

  • Margalit, E., Jamison, K. W., Weiner, K. S., et al., “Ultra-high-resolution fMRI of human ventral temporal cortex reveals differential representation of categories and domains,” J. Neurosci., 40, No. 15, 3008–3024 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyoshi, K., Kimura, Y., and Ashida, H., “Longer prime presentation decreases picture-word cross-domain priming,” Front. Psychol., 6, 1040 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Moshnikova, N. Yu., Kushnir, A. B., and Mikhailova, E. S., “Psychophysiological study of the basic and superordinate categorization of objects complicated by the influence of a previous irrelevant stimulus,” Fiziol. Cheloveka, 48, No. 6, 44–56 (2022).

    Google Scholar 

  • Ortells, J. J., Kiefer, M., Castillo, A., et al., “The semantic origin of unconscious priming: Behavioral and event-related potential evidence during category congruency priming from strongly and weakly related masked words,” Cognition, 146, 143–157 (2016).

    Article  PubMed  Google Scholar 

  • Poncet, M., Fabre-Thorpe, M., and Chakravarthi, R., “A simple rule to describe interactions between visual categories,” Eur. J. Neurosci., 52, 4639–4666 (2020).

    Article  PubMed  Google Scholar 

  • Potter, M. C. and Hagmann, C. E., “Banana or fruit? Detection and recognition across categorical levels in RSVP,” Psychon. Bull. Rev., 22, 578–585 (2015).

    Article  PubMed  Google Scholar 

  • Rabi, R., Joanisse, M. F., Zhu, T., and Minda, J. P., “Cognitive changes in conjunctive rule-based category learning: An ERP approach,” Cogn. Affect. Behav. Neurosci., 18, No. 5, 1034–1048 (2018).

    Article  PubMed  Google Scholar 

  • Rajalingham, R. and DiCarlo, J. J., “Reversible inactivation of different millimeter-scale regions of primate IT results in different patterns of core object recognition deficits,” Neuron, 102, 493–505 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Roelofs, A. and Piai, V., “Distributional analysis of semantic interference in picture naming,” Q. J. Exp. Psychol., 70, No. 4, 782-792 (2017).

    Article  Google Scholar 

  • Rolls, E. T. and Tovee, M. J., “Processing speed in the cerebral cortex and the neurophysiology of visual masking,” Proc. Biol. Sci., 257, No. 1348, 9–15 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Rosch, E., Mervis, C. B., Gray, W. D., et al., “Basic objects in natural categories,” Cogn. Psychol., 8, No. 3, 382–439 (1976).

    Article  Google Scholar 

  • Schmidt, F. and Schmidt, T., “Response control by primes, targets, and distractors: from feedforward activation to controlled inhibition,” Psychol. Res., 85, 195–213 (2021).

    Article  PubMed  Google Scholar 

  • Taniguchi, K., Kuraguchi, K., Takano, Y., and Itakura, S., “Object categorization processing differs according to category level: Comparing visual information between the basic and superordinate levels,” Front. Psychol., 11, 501 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanmarcke, S., Calders, F., and Wagemans, J., “The time-course of ultrarapid categorization: the influence of scene congruency and top-down processing,” I-Perception, 7, No. 5, 2041669516673384 (2016).

  • Wu, C. T., Crouzet, S. M., Thorpe, S. J., and Fabre-Thorpe, M., “At 120 msec you can spot the animal but you don’t yet know it’s a dog,” J. Cogn. Neurosci., 27, No. 1, 141–149 (2015).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Gerasimenko.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 73, No. 5, pp. 606–621, September–October, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimenko, N.Y., Kushnir, A.B. & Mikhailova, E.S. Basic and Superordinate Image Categorization. Influences of the Extent of Congruence and the Time Parameters of Presentation of the Preceding Stimulus. Neurosci Behav Physi 54, 80–90 (2024). https://doi.org/10.1007/s11055-024-01570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-024-01570-5

Keywords

Navigation