Log in

The Therapeutic Potential of Focused Ultrasound in Patients with Alzheimer’s Disease

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Alzheimer’s disease (AD) is a common progressive neurodegenerative disease characterized by abnormal deposition of β-amyloid (Aβ) and hyperphosphorylated tau protein. Despite the fact that biomarkers and methods of treating AD are currently under active investigation, there is still no therapy that can significantly reduce the progression of this disease. Seeking therapeutic disease-modifying strategies is therefore becoming increasingly popular. One such strategy is MRI-guided focused ultrasound (FUS) using a contrast agent (microbubbles). Low-intensity FUS produces a temporary increase in the permeability of the blood–brain barrier (BBB), which is the main obstacle to the effective delivery of therapeutic compounds to the brain, imposing size limits and biochemical restrictions on the passage of molecules. AD is associated with BBB dysfunction, so studies of the use of FUS in patients with AD is of considerable interest. Studies in animal models of AD have provided evidence indicating the effectiveness of FUS. Researchers attribute the effectiveness of the method to an increase in BBB permeability induced by FUS and a decrease in the number of amyloid plaques. FUS has also been shown to be able to facilitate the delivery of therapeutic drugs to the brain. FUS can therefore be regarded as a contemporary noninvasive treatment method. Further studies are needed to evaluate the effectiveness of FUS in patients with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koberskaya, N. N., “Alzheimer’s disease,” Nevrol. Neiropsikh. Psikhosom., 11, No. 35, 52 (2019), https://doi.org/10.14412/2074-2711-2019-3S-52-60.

  2. Bogolepova, A. N., Zhuravleva, A. N., and Makhnovich, E. V., “Perspectives of the diagnosis of Alzheimer’s disease using optic coherent tomography,” Zh. Nevrol. Psikhiatr., 117, No. 9, 112–117 (2017), https://doi.org/10.17116/jnevro201711791112-117.

  3. Yiannopoulou, K. G. and Papageorgiou, S. G., “Current and future treatments in Alzheimer disease: an update,” J. Cent. Nerv. Syst. Dis., 12, 1179573520907397 (2020), https://doi.org/10.1177/1179573520907397.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bogolepova, A. N., “A contemporary view of the possibilities of preventing dementia,” Meditsinsk. Sov., 18, 48–54 (2019), https://doi.org/10.21518/2079-701X-2019-18-52-58.

  5. Vassar, R. and Citron M., “Abeta-generating enzymes: recent advances in beta- and gamma-secretase research,” Neuron, 27, No. 3, 419–422 (2000), https://doi.org/10.1016/s0896-6273(00)00051-9.

    Article  CAS  PubMed  Google Scholar 

  6. Pilipovich, A. A. and Danilov, A. B., “New strategies for the diagnosis and treatment of Alzheimer’s disease: monoclonal antibodies to beta-amyloid,” Med. Alfavit, 1, No. 2, 35–42 (2019), https://doi.org/10.33667/2078-5631-2019-1-2(377)-35-42.

  7. Wolf, S., Seehaus, B., Minol, K., and Gassen, H. G., “The blood–brain barrier: a specialty of cerebral microcirculation systems,” Die Naturwissenschaften, 83, No. 7, 302–311 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Sweeney, M. D., Sagare, A. P., and Zlokovic, B. V., “Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders,” Nat. Rev. Neurol., 14, No. 3, 133–150 (2018), https://doi.org/10.1038/nrneurol.2017.188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nelson, A. R., Sweeney, M. D., Sagare, A. P., and Zlokovic, B. V., “Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease,” Biochim. Biophys. Acta, 1862, No. 5, 887–900 (2016), https://doi.org/10.1016/j.bbadis.2015.12.016.

    Article  CAS  PubMed  Google Scholar 

  10. Montagne, A., Zhao, Z., and Zlokovic, B. V., “Alzheimer’s disease: A matter of blood–brain barrier dysfunction?” J. Exp. Med., 214, No. 11, 3151–3169 (2017), https://doi.org/10.1084/jem.20171406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jordão, J. F., Thévenot, E., Markham-Coultes, K., et al., “Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound,” Exp. Neurol., 248, 16–29 (2013), https://doi.org/10.1016/j.expneurol.2013.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bien-Ly, N., Boswell, C. A., Jeet, S., et al., “Lack of widespread BBB disruption in Alzheimer’s disease models: Focus on therapeutic antibodies,” Neuron, 88, No. 2, 289–297 (2015), https://doi.org/10.1016/j.neuron.2015.09.036.

    Article  CAS  PubMed  Google Scholar 

  13. Souza, R. M., da Silva, I. C. S., Delgado, A. B. T., et al., “Focused ultrasound and Alzheimer’s disease. A systematic review,” Dement. Neuropsychol., 12, No. 4, 353–359 (2018), https://doi.org/10.1590/1980-57642018dn12-040003.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zinchenko, E. M., Klimova, M. M., Shirocova, A. A., et al., “Changes in the permeability of the blood–brain barrier during the development of Alzheimer’s disease in mice,” Izv. Saratov. Univ. Ser. Khim. Biol., 19, No. 4, 427–439 (2019), https://doi.org/10.18500/1816-9775-2019-19-4-427-439.

  15. Izadifar, Z., Babyn, P., and Chapman D., “Mechanical and biological effects of ultrasound: A review of present knowledge,” Ultrasound Med. Biol., 43, No. 6, 1085–1104 (2017), https://doi.org/10.1016/j.ultrasmedbio.2017.01.023.

    Article  PubMed  Google Scholar 

  16. O’Brien W., “Ultrasound-biophysics mechanisms,” Prog. Biophys. Mol. Biol., 93, 212–255 (2007), https://doi.org/10.1016/j.pbiomolbio.2006.07.010.

    Article  PubMed  Google Scholar 

  17. Clement, G. T., White, J., and Hynynen K., “Investigation of a large-area phased array for focused ultrasound surgery through the skull,” Phys. Med. Biol., 45, No. 4, 1071 (2000).

  18. Tyurnikov, V. M. and Gushcha, A. O., “High intensity focused ultrasound in functional neurosurgery,” Ann. Klinich. Eksperim. Nevrol., 10, No. 4, 52–57 (2016).

    Google Scholar 

  19. Galkin, M. V., “The use of transcranial focused ultrasound in the treatment of CNS pathology,” Zh. Vopr. Neirokhirurgii, 80, No. 2, 108–118 (2016), https://doi.org/10.17116/neiro2016802108-118.

  20. Kholyavin, A. I., Technical, clinical and economic aspects of therapeutic transcranial focused ultrasound,” Byull. Natsional. Obshch. Izuch. Bol. Park. Rasstr. Dvizh., 1, 17–24 (2019).

    Google Scholar 

  21. Chang, W. S., Jung, H. H., Kweon, E. J., et al., “Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes,” J Neurol. Neurosurg. Psychiatry, 86, No. 3, 257–264 (2015), https://doi.org/10.1136/jnnp-2014-307642.

    Article  PubMed  Google Scholar 

  22. Gasca-Salas, C., Fernández-Rodríguez, B., Pineda-Pardo, J. A., et al., “Blood–brain barrier opening with focused ultrasound in Parkinson’s disease dementia,” Nat. Commun., 12, No. 1, 1–7 (2021), https://doi.org/10.1038/s41467-021-21022-9.

    Article  CAS  Google Scholar 

  23. Jung, N. Y., Park, C. K., Chang, W. S., et al., “Effects on cognition and quality of life with unilateral magnetic resonance-guided focused ultrasound thalamotomy for essential tremor,” Neurosurg. Focus, 44, No. 2, E8 (2018), https://doi.org/10.3171/2017.11.FOCUS17625.

  24. Schreglmann, S. R., Bauer, R., Hägele-Link, S., et al., “Unilateral cerebellothalamic tract ablation in essential tremor by MRI-guided focused ultrasound,” Neurology, 88, No. 14, 1329–1333 (2017), https://doi.org/10.1212/WNL.0000000000003795.

    Article  PubMed  Google Scholar 

  25. Todd, N., McDannold, N., and Borsook D., “Targeted manipulation of pain neural networks: The potential of focused ultrasound for treatment of chronic pain,” Neurosci. Biobehav. Rev., 115, 238–250 (2020), https://doi.org/10.1016/j.neubiorev.2020.06.007.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Germann, J., Elias, G. J. B., Neudorfer, C., et al., “Potential optimization of focused ultrasound capsulotomy for obsessive compulsive disorder,” Brain, 144, No. 11, 3529–3540 (2021), https://doi.org/10.1093/brain/awab232.

    Article  PubMed  Google Scholar 

  27. Jung, H. H., Chang, W. S., Rachmilevitch, I., et al., “Different magnetic resonance imaging patterns after transcranial magnetic resonance-guided focused ultrasound of the ventral intermediate nucleus of the thalamus and anterior limb of the internal capsule in patients with essential tremor or obsessive-compulsive disorder,” J. Neurosurg., 122, No. 1, 162–168 (2015), https://doi.org/10.3171/2014.8.JNS132603.

    Article  PubMed  Google Scholar 

  28. Medel, R., Monteith, S., Elias, W. J., et al., “Magnetic resonance-guided focused ultrasound surgery. Review of current and future applications,” Neurosurg., 71, No. 4, 755–763 (2012), https://doi.org/10.1227/NEU.0b013e3182672ac9.

    Article  Google Scholar 

  29. Burgess, A. and Hynynen, K., “Noninvasive and targeted drug delivery to the brain using focused ultrasound,” ACS Chem. Neurosci., 4, No. 4, 519–526 (2013), https://doi.org/10.1021/cn300191b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hynynen, K., McDannold, N., Vykhodtseva, N., and Jolesz, F. A., “Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits,” Radiology, 220, No. 3, 640–646 (2001), https://doi.org/10.1148/radiol.2202001804.

    Article  CAS  PubMed  Google Scholar 

  31. Sheikov, N., McDannold, N., Vykhodtseva, N., et al., “Cellular mechanisms of the blood–brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol., 30, 979–989 (2004), https://doi.org/10.1016/j.ultrasmedbio.2004.04.010.

    Article  PubMed  Google Scholar 

  32. Kim, H., Taghados, S. J., Fischer, K., et al., “Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound,” Ultrasound Med. Biol., 38, 1568–1575 (2012), https://doi.org/10.1016/j.ultrasmedbio.2012.04.023.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee, Y. F., Lin, C. C., Cheng, J. S., and Chen, G. S., “High-intensity focused ultrasound attenuates neural responses of sciatic nerves isolated from normal or neuropathic rats,” Ultrasound Med. Biol., 41, 132–142 (2015), https://doi.org/10.1016/j.ultrasmedbio.2014.08.014.

    Article  PubMed  Google Scholar 

  34. Krasovitski, B., Frenkel, V., Shoham, S., and Kimmel E., “Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects,” Proc. Natl. Acad. Sci. USA, 108, 3258–3263 (2011), https://doi.org/10.1073/pnas.1015771108.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bystritsky, A. and Korb, A. S., “A review of low-intensity transcranial focused ultrasound for clinical applications,” Curr. Behav. Neurosci. Rep., 2, No. 2, 60–66 (2015), https://doi.org/10.1007/s40473-015-0039-0.

    Article  Google Scholar 

  36. Min, B. K., Yang, P. S., Bohlke, M., et al., “Focused ultrasound modulates the level of cortical neurotransmitters: potential as a new functional brain map** technique,” Int. J. Imag. Syst.Technol., 21, 232–240 (2011), https://doi.org/10.1002/ima.20284.

    Article  Google Scholar 

  37. Burgess, A., Dubey, S., Yeung, S., et al., “Alzheimer disease in a mouse model: MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood–brain barrier and improves pathologic abnormalities and behavior,” Radiology, 273, No. 3, 736–745 (2014), https://doi.org/10.1148/radiol.14140245.

    Article  PubMed  Google Scholar 

  38. Kobus, T., Vykhodtseva, N., Pilatou, M., et al., “Safety validation of repeated blood–brain barrier disruption using focused ultrasound,” Ultrasound Med. Biol., 42, No. 2, 481–492 (2016), https://doi.org/10.1016/j.ultrasmedbio.2015.10.009.

    Article  PubMed  Google Scholar 

  39. Hsu, P. H., Lin, Y. T., Chung, Y. H., et al., “Focused ultrasound-induced blood–brain barrier opening enhances GSK-3 inhibitor delivery for amyloid-beta plaque reduction,” Sci. Rep., 8, No. 1, 12882 (2018), https://doi.org/10.1038/s41598-018-31071-8.

  40. Karakatsani, M. E., Kugelman, T., Ji, R., et al., “Unilateral focused ultrasound-induced blood–brain barrier opening reduces phosphorylated tau from the rTg4510 mouse model,” Theranostics, 9, No. 18, 5396–5411 (2019), https://doi.org/10.7150/thno.28717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nisbet, R. M., Van der Jeugd, A., Leinenga, G., et al., “Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model,” Brain, 140, No. 5, 1220–1230 (2017), https://doi.org/10.1093/brain/awx052.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jordão, J. F., Ayala-Grosso, C. A., Markham, K., et al., “Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer’s disease,” PLoS One, 5, No. 5, e10549 (2010), https://doi.org/10.1371/journal.pone.0010549.

  43. Leinenga, G. and Götz J., “Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model,” Sci. Transl. Med., 7, No. 278, 278–233 (2015), https://doi.org/10.1126/scitranslmed.aaa2512.

    Article  CAS  Google Scholar 

  44. Shin, J., Kong, C., Lee, J., et al., “Focused ultrasound-induced blood–brain barrier opening improves adult hippocampal neurogenesis and cognitive function in a cholinergic degeneration dementia rat model,” Alzheimers Res. Ther., 11, No. 1, 110 (2019), https://doi.org/10.1186/s13195-019-0569-x.

  45. Alecou, T., Giannakou, M., and Damianou C., “Amyloid β plaque reduction with antibodies crossing the blood–brain barrier, which was opened in 3 sessions of focused ultrasound in a rabbit model,” J. Ultrasound. Med., 36, No. 11, 2257–2270 (2017), https://doi.org/10.1002/jum.14256.

    Article  PubMed  Google Scholar 

  46. O’Reilly, M. A., Jones, R. M., Barrett, E., et al., “Investigation of the safety of focused ultrasound-induced blood–brain barrier opening in a natural canine model of aging,” Theranostics, 7, No. 14, 3573 (2017), https://doi.org/10.1016/S0140-6736(20)31208-3.

    Article  Google Scholar 

  47. Eguchi, K., Shindo, T., Ito, K., et al., “Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia – Crucial roles of endothelial nitric oxide synthase,” Brain Stimul., 11, No. 5, 959–973 (2018), https://doi.org/10.1016/j.brs.2018.05.012.

    Article  PubMed  Google Scholar 

  48. Luo, K., Wang, Y., Chen, W. S., et al., “Treatment combining focused ultrasound with gastrodin alleviates memory deficit and neuropathology in an Alzheimer’s disease-like experimental mouse model,” Neural Plast., 2022, 5241449 (2022), https://doi.org/10.1155/2022/5241449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mi, X., Du, H., Guo, X., et al., “Asparagine endopeptidase-targeted ultrasound-responsive nanobubbles alleviate tau cleavage and amyloid-β deposition in an Alzheimer’s disease model,” Acta Biomater., 141, 388–397 (2022), https://doi.org/10.1016/j.actbio.2022.01.023.

    Article  CAS  PubMed  Google Scholar 

  50. Poon, C. T., Shah, K., Lin, C., et al., “Time course of focused ultrasound effects on β-amyloid plaque pathology in the TgCRND8 mouse model of Alzheimer’s disease,” Sci. Rep., 8, No. 1, 14061 (2018), https://doi.org/10.1038/s41598-018-32250-3.

  51. Lipsman, N., Meng, Y., Bethune, A. J., et al., “Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound,” Nat. Commun., 9, No. 1, 2336 (2018), https://doi.org/10.1038/s41467-018-04529-6.

  52. Rezai, A. R., Ranjan, M., D’Haese, P. F., et al., “Noninvasive hippocampal blood–brain barrier opening in Alzheimer’s disease with focused ultrasound,” Proc. Natl. Acad. Sci. USA, 117, No. 17, 9180–9182 (2020), https://doi.org/10.1073/pnas.2002571117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. D’Haese, P. F., Ranjan, M., Song, A., et al., “β-Amyloid plaque reduction in the hippocampus after focused ultrasound-induced blood–brain barrier opening in Alzheimer’s disease,” Front. Hum. Neurosci., 14, 593672 (2020), https://doi.org/10.3389/fnhum.2020.593672.

  54. Park, S. H., Baik, K., Jeon, S., et al., “Extensive frontal focused ultrasound mediated blood–brain barrier opening for the treatment of Alzheimer’s disease: a proof-of-concept study,” Transl. Neurodegener., 10, No. 1, 44 (2021), https://doi.org/10.1186/s40035-021-00269-8.

  55. Keep, R. F., Jones, H. C., and Drewes, L. R., “Progress in brain barriers and brain fluid research in 2017,” Fluids Barriers CNS, 15, No. 1, 6 (2018), https://doi.org/10.1186/s40035-021-00269-8.

    Article  Google Scholar 

  56. Meng, Y., MacIntosh, B. J., Shirzadi, Z., et al., “Resting state functional connectivity changes after MR-guided focused ultrasound mediated blood–brain barrier opening in patients with Alzheimer’s disease,” NeuroImage, 200, 275–280 (2019), https://doi.org/10.1016/j.neuroimage.2019.06.060.

    Article  PubMed  Google Scholar 

  57. Jeong, H., Im, J. J., Park, J. S., et al., “A pilot clinical study of low-intensity transcranial focused ultrasound in Alzheimer’s disease,” Ultrasonography, 40, No. 4, 512–519(2021), https://doi.org/10.14366/usg.20138.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kovalenko.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 10, pp. 38–45, October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, E.A., Makhnovich, E.V., Osinovskaya, N.A. et al. The Therapeutic Potential of Focused Ultrasound in Patients with Alzheimer’s Disease. Neurosci Behav Physi 53, 793–800 (2023). https://doi.org/10.1007/s11055-023-01471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01471-z

Keywords

Navigation