Log in

Complex Impairments to the Olfactory Sensory System in Schizophrenia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This article analyzes published data and shows that the functioning of the olfactory system is impaired in schizophrenia. Structural and functional anomalies extend from the cortex to the peripheral apparatus of the olfactory sensory system. As the olfactory sensory system is anatomically the most tightly linked with the temporal-limbic and frontal lobes, which are the most involved in schizophrenia and underlie the social, emotional, and cognitive anomalies in this pathology, studies of olfaction may provide a suitable tool for assessing the structural and functional integrity of these pathomorphological neural substrates. Because of this link, olfactory dysfunction can be used as a sensitive indicator both for the early diagnosis of schizophrenia and for differential diagnosis, especially in people with high genetic risk of illness. The relationship between one of the leading pathogenetic components of schizophrenia – a defect in postanal neurogenesis – with formation of anomalies in the olfactory system is of particular interest. Studies of schizophrenia have in recent years started to use biopsies of the olfactory neuroepithelium, allowing the molecular mechanisms of the pathogenesis the disease to be observed in model cultures. Thus, the olfactory neuroepithelium can be used as a model not only facilitating identification of preclinical biomarkers but also linking them with the specific mechanisms of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Golimbet, A. I. Kryukov, G. P. Kostyuk, et al., “The olfactory neuroepithelium as a model for studies of the molecular mechanisms of schizophrenia,” Zh. Nevrol. Psikhiat., No. 6, 111–114.

  2. B. Atanasova et al., “Olfaction: a potential cognitive marker of psychiatric disorders,” Neurosci. Biobehav. Rev., 32, No. 7, 1315–25 (2008).

    Article  PubMed  Google Scholar 

  3. D. N. Abrous, M. Koehl, and M. Le Moal, “Adult neurogenesis, from precursors to network and physiology,” Physiol. Rev., 85, No. 2, 523–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. A. K. Anderson et al., “Dissociated neural representations of intensity and valence in human olfaction,” Nat. Neurosci., 6, 196–202 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. S. E. Arnold and L. Rioux, “Challenges, status, and opportunities for studying developmental neuropathology in adult schizophrenia,” Schizophr. Bull., 27, No. 3, 395–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. S. E. Arnold et al., “Dysregulation of olfactory receptor neuron lineage in schizophrenia,” Arch. Gen. Psychiatry, 58, No. 9, 829–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. K. E. Borgmann-Winter et al., “Altered G protein coupling in olfactory neuroepithelial cells from patients with schizophrenia,” Schizophr. Bull., 42, No. 2, 377–85 (2016).

    Article  PubMed  Google Scholar 

  8. J. Bossy, “Development of olfactory and related structures in staged human embryos,” Anat. Embryol. (Berl.), 161, No. 2, 225–36 (1980).

    Article  CAS  Google Scholar 

  9. W. J. Brewer et al., “Impairment of olfactory identification ability in individuals at ultra-high risk for psychosis who later develop schizophrenia,” Am. J. Psychiatry, 160, No. 10, 1790–4 (2003).

    Article  PubMed  Google Scholar 

  10. T. W. Buchanan, D. Tranel, and R. Adolphs, “A specific role for the human amygdala in olfactory memory,” Learn. Mem., 10, No. 5, 319–25 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  11. T. M. Cabrera-Vera et al., “Insights into G protein structure, function and regulation,” Endocrine Rev., 24, No. 5, 765–781 (2003).

    Article  CAS  Google Scholar 

  12. J. G. Chi, E. C. Dooling, and F. H. Gilles, “Gyral development of the human brain,” Ann. Neurol., 1, 86–93 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. C. Corcoran et al., “Olfactory deficits, cognition and negative symptoms in early onset psychosis,” Schizophr. Res., 80, No. 1, 95–106 (2005).

    Google Scholar 

  14. E. Courtiol and D. A. Wilson, “Thalamic olfaction, characterizing odor processing in the mediodorsal thalamus of the rat,” J. Neurophysiol., 111, No. 6, 1274–85 (2014).

    Article  PubMed  Google Scholar 

  15. B. Crespo-Facorroa et al., “Temporal pole morphology and psychopathology in males with schizophrenia,” Psychiatry Res. Neuroimaging, 132, 107–115 (2004).

    Article  Google Scholar 

  16. A. M. Cunningham, P. B. Manis, R. R. Reed, and G. V. Ronnet, “Olfactory receptor neurons exist as distinct subclasses of immature and mature cells in primary culture,” Neurosci., 93, No. 4, 1301–1312 (1999).

    Article  CAS  Google Scholar 

  17. L. Dahmani et al., “An intrinsic association between olfactory identification and spatial memory in humans,” Nat. Comm., 9, 4162 (2018).

    Article  CAS  Google Scholar 

  18. G. Daval, J. Leveteau, and P. Macleod, “Analyse topographique de l’electro-olfactogramme chez la grenouille,” J. Physiol. Paris, 76, No. 6, 559–567 (1980).

    CAS  PubMed  Google Scholar 

  19. R. L. Doty, P. Shaman, and M. Dann, “Development of the University of Pennsylvania Smell Identification Test, a standardized microencapsulated test of olfactory function,” Physiol. Behav., 32, No. 3, 489–502 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. A. Drobyshevsky et al., “Antenatal insults modify newborn olfactory function by nitric oxide produced from neuronal nitric oxide synthase,” Exp. Neurol., 237, No. 2, 427–34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. C. N. Egbujo et al., “Molecular evidence for decreased synaptic efficacy in the postmortem olfactory bulb of individuals with schizophrenia,” Schizophr. Res., 168, 554–562 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. J. A. English et al., “Reduced protein synthesis in schizophrenia patient-derived olfactory cells,” Transl. Psychiatry, 5, e663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. R. Faigle and H. Song, “Signaling mechanisms regulating adult neural stem cells and neurogenesis,” Biochim. Biophys. Acta, 1830, No. 2, 2435–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. B. J. Gallagher, J. A. McFalls, B. J. Jones, and A. M. Pisa, “Prenatal illness and subtypes of schizophrenia, the winter pregnancy phenomenon,” J. Clin. Psychol., 55, 915–922 (1999).

    Article  PubMed  Google Scholar 

  25. N. J. Gamo and A. Sawa, “Human stem cells and surrogate tissues for basic and translational study of mental disorders,” Biol. Psychiatry, 75, No. 12, 918–919 (2015).

    Article  Google Scholar 

  26. C. L. Godoy et al., “Olfaction in neurologic and neurodegenerative diseases, a literature review,” Arch. Otorhinolaryngol., 19, 176–179 (2015).

    Google Scholar 

  27. W. F. Goette, A. E. Werry, and A. L. Schmitt, “The relationship between smell identification and neuropsychological domains: Results from a sample of community-dwelling adults suspected of dementia,” J. Clin. Exp. Neuropsychol., 40, No. 6, 595–605 (2018).

    Article  PubMed  Google Scholar 

  28. Q. Gong, “Culture of mouse olfactory sensory neurons,” Curr. Protoc. Neurosci., Unit 3, 24 (2012).

    Google Scholar 

  29. J. D. Howard et al., “Odor quality coding and categorization in human posterior piriform cortex,” Nat. Neurosci., 12, 932–938 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A. Y. Hsia, J. D. Vincent, and P. M. Lledo, “Dopamine depresses synaptic inputs into the olfactory bulb,” J. Neurophysiol., 82, No. 2, 1082–5 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. V. Kamath, J. S. Bedwell, and M. T. Compton, “Is the odour identification deficit in schizophrenia influenced by odour hedonics?” Cogn. Neuropsychiatry, 16, No. 5, 448–60 (2011).

    Article  PubMed  Google Scholar 

  32. V. Kamath et al., “Olfactory processing in schizophrenia, non-ill first-degree family members, and young people at-risk for psychosis,” World J. Biol. Psychiatry, 15, No. 3, 209–18 (2014).

    Article  PubMed  Google Scholar 

  33. S. Kiparizoska and T. Ikuta, “Disrupted olfactory integration in schizophrenia: Functional connectivity study,” Int. J. Neuropsychopharmacol., 20, No. 9, 740–746 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. L. C. Kopala et al., “Olfactory function in monozygotic twins discordant for schizophrenia,” Am. J. Psychiatry, 155, 134–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. L. C. Kopala et al., “Impaired olfactory identification in relatives of patients with familial schizophrenia,” Am. J. Psychiatry, 158, No. 8, 1286–90 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. T. Kovács, “Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders,” Ageing Res. Rev., 3, 215–232 (2004).

    Article  PubMed  Google Scholar 

  37. J. Lavoie, A. Sawa, and K. Ishizuka, “Application of olfactory tissue and its neural progenitors to schizophrenia and psychiatric research,” Curr. Opin. Psychiatry, 30, No. 3, 176–183 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. S. G. Leinwand and S. H. Chalasani, “Olfactory networks: from sensation to perception,” Curr. Opin. Genet. Dev., 21, No. 6, 806–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. P. F. Liddle, “Schizophrenic syndromes, cognitive performance and neurological dysfunction,” Psychol. Med., 17, No. 1, 49–57 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. D. A. Lim and A. Alvarez-Buylla, “The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis,” Cold Spring Harb. Perspect. Biol., 8, No. 5, a018820 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. N. Mandairon, F. Jourdan, and A. Didier, “Deprivation of sensory inputs to the olfactory bulb up-regulates cell death and proliferation in the subventricular zone of adult mice,” Neurosci., 119, 507–516 (2003).

    Article  CAS  Google Scholar 

  42. C. Martin, J. Beshel, and L. M. Kay, “An olfacto-hippocampal network is dynamically involved in odor-discrimination learning,” J. Neurophysiol., 98, No. 4, 2196–2205 (2007).

    Article  PubMed  Google Scholar 

  43. N. A. Martínez et al., “Clinical importance of olfactory function in neurodegenerative diseases,” Rev. Med. Hosp. Gen. Méx., 81, No. 4, 268–275 (2018).

    Google Scholar 

  44. B. P. Menco, “Pre-natal development of rat nasal epithelia. IV. Freeze-fracturing on apices, microvilli and primary and secondary cilia of olfactory and respiratory epithelial cells, and on olfactory axons,” Anat. Embryol. (Berl.), 178, No. 4, 309–26 (1988).

    Article  CAS  Google Scholar 

  45. A. Menini, “Calcium signalling and regulation in olfactory neurons,” Curr. Opin. Neurobiol., 9, 419–426 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. J. K. Millar et al., “DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling,” Science, 310, 1187–1191 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. P. J. Moberg et al., “Olfactory dysfunction in schizophrenia: a qualitative and quantitative review,” Neuropsychopharmacology, 21, No. 3, 325–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. P. J. Moberg, D. R. Roalf, R. E. Gur, and B. I. Turetsky, “Smaller nasal volumes as stigmata of aberrant neurodevelopment in schizophrenia,” Am. J. Psychiatry, 161, 2314–2316 (2004).

    Article  PubMed  Google Scholar 

  49. S. Nagayama et al., “Differential axonal projection of mitral and tufted cells in the mouse main olfactory system,” Front. Neural Circuits, 4, 120 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. A. D. Nguyen, M. E. Shenton, and J. J. Levitt, “Olfactory dysfunction in schizophrenia: a review of neuroanatomy and psychophysiological measurements,” Harv. Rev. Psychiatry, 18, No. 5, 279–92 (2010).

    Article  PubMed  Google Scholar 

  51. O. O. Okusaga, “Accelerated aging in schizophrenia patients: the potential role of oxidative stress,” Aging Dis., 5, No. 4, 256–62 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. H. Pantazopoulos et al., “Proteoglycan abnormalities in olfactory epithelium tissue from subjects diagnosed with schizophrenia,” Spec. Sect. Negat. Sympt., 150, 366–372 (2013).

    Google Scholar 

  53. B. M. Pause et al., “Increased processing speed for emotionally negative odors in schizophrenia,” Int. J. Psychophysiol., 70, No. 1, 16–22 (2008).

    Article  PubMed  Google Scholar 

  54. G. D. Pearlson et al., “Medial and superior temporal gyral volumes and cerebral asymmetry in schizophrenia versus bipolar disorder,” Biol. Psychiatry, 41, 1–14 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. J. Plailly et al., “Left temporo-limbic and orbital dysfunction in schizophrenia during odor familiarity and hedonicity judgments,” NeuroImage, 29, 302–313 (2006).

    Article  PubMed  Google Scholar 

  56. L. Rioux et al., “Characterization of olfactory bulb glomeruli in schizophrenia,” Schizophr. Res., 77, No. 2–3, 229–239 (2005).

    Article  PubMed  Google Scholar 

  57. D. R. Roalf et al., “Unirhinal olfactory function in schizophrenia patients and first-degree relatives,” Neuropsych. Clin. Neurosci., 8, 389–396 (2016).

    Google Scholar 

  58. J. P. Royet et al., “Functional anatomy of perceptual and semantic processing for odors,” J. Cogn. Neurosci., 11, No. 1, 94–109 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. I. Savic, “Imaging of brain activation by odorants in humans,” Curr. Opin. Neurobiol., 12, No. 4, 455–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. R. Sattler, et al., “Human nasal olfactory epithelium as a dynamic marker for CNS therapy development,” Exp. Neurol., 232, No. 2, 203–11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. M. Schecklmann et al., “A systematic review on olfaction in child and adolescent psychiatric disorders,” J. Neural Transm. (Vienna), 120, No. 1, 121–30 (2013).

    Article  CAS  Google Scholar 

  62. L. J. Seidman et al., “Experimental and clinical neuropsychological measures of prefrontal dysfunction in schizophrenia,” Neuropsychology, 9, No. 4 (1995).

  63. K. Sim et al., “Hippocampal and parahippocampal volumes in schizophrenia, a structural MRI study,” Schizophr. Bull., 32, No. 2, 332–40 (2006).

    Article  PubMed  Google Scholar 

  64. P. Sirota et al., “Increased olfactory sensitivity in first episode psychosis and the effect of neuroleptic treatment on olfactory sensitivity in schizophrenia,” Psychiatry Res., 86, No. 2, 143–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. P. Taupin, “Adult neurogenesis in the mammalian central nervous system, functionality and potential clinical interest,” Med. Sci. Monit., 11, No. 7, RA247–252 (2005).

    PubMed  Google Scholar 

  66. J. Y. Tee, R. Sutharsan, Y. Fan, and A. Mackay-Sim, “Cell migration in schizophrenia, patient-derived cells do not regulate motility in response to extracellular matrix,” Mol. Cell. Neurosci., 80, 111–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. B. Turetsky et al., “Frontal and temporal lobe brain volumes in schizophrenia. Relationship to symptoms and clinical subtype,” Arch. Gen. Psychiatry, 52, No. 12, 1061–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. B. I. Turetsky et al., “Olfactory bulb volume is reduced in patients with schizophrenia,” Am. J. Psychiatry, 157, 828–830 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. B. I. Turetsky et al., “Low olfactory bulb volume in 1st-degree relatives of patients with schizophrenia,” Am. J. Psychiatry, 160, 703–708 (2003).

    Article  PubMed  Google Scholar 

  70. B. I. Turetsky et al., “Physiological impairment of olfactory stimulus processing in schizophrenia,” Biol. Psychiatry, 53, 403–41 (2003).

    Article  PubMed  Google Scholar 

  71. B. I. Turetsky et al., “Decrements in volume of anterior ventromedial temporal lobe and olfactory dysfunction in schizophrenia,” Arch. Gen. Psychiatry, 60, No. 12, 1193–200 (2003).

    Article  PubMed  Google Scholar 

  72. B. I. Turetsky et al., “Reduced posterior nasal cavity volume: a gender-specific neurodevelopmental abnormality in schizophrenia,” Schizophr. Res., 93, 237–244 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  73. B. I. Turetsky, C. G. Hahn, S. E. Arnold, and P. J. Moberg, “Olfactory receptor neuron dysfunction in schizophrenia,” Neuropsychopharmacology, 34, No. 3, 767–774 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. B. I. Turetsky, C. G. Hahn, K. Borgmann-Winter, and P. J. Moberg, “Scents and nonsense: olfactory dysfunction in schizophrenia,” Schizophr. Bull., 35, No. 6, 1117–1131 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. B. I. Turetsky and P. J. Moberg, “An odor-specific threshold deficit implicates abnormal intracellular cyclic AMP signaling in schizophrenia,” Am. J. Psychiatry, 166, No. 2, 226–33 (2009).

    Article  PubMed  Google Scholar 

  76. R. Vassar et al., “Topographic organization of sensory projections to the olfactory bulb,” Cell, 79, 981–991 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. C. S. Weickert and D. Weinberger, “A candidate molecule approach to defining developmental pathology in schizophrenia,” Schizophr. Bull., 24, No. 2, 303–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. D. W. Wesson, D. A. Wilson, and R. A. Nixon, “Should olfactory dysfunction be used as a biomarker of Alzheimer’s disease?” Expert Rev. Neurother., 10, No. 5, 633–635 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Y. Yılmaz et al., “Clinical assessment and implication of olfactory dysfunction in neuropsychiatric disorders of childhood and adulthood: A review of literature,” Neurobehav. Sci., 1, 7–30 (2015).

    Article  Google Scholar 

  80. D. H. Zald and J. V. Pardo, “Emotion, olfaction, and the human amygdala, amygdala activation during aversive olfactory stimulation,” Proc. Natl. Acad. Sci. USA, 94, No. 8, 4119–24 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bigdai.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 52, No. 2, pp. 93–104, April–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigdai, E.V., Samoilov, V.O. & Sinegubov, A.A. Complex Impairments to the Olfactory Sensory System in Schizophrenia. Neurosci Behav Physi 52, 598–606 (2022). https://doi.org/10.1007/s11055-022-01280-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01280-w

Keywords

Navigation