Log in

Effects of Activation of κ-Opioid Receptors on Behavior during Postnatal Formation of the Stress Reactivity Systems

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Stress at any age, including at the early stages of postnatal development, leads to changes in the state and reactivity of the stress-related humoral systems, particularly the hypothalamo-hypophyseal-adrenal system (HHAS) and the dynorphin- κ-opioid system (DKOS). These changes are suggested to underlie a number of diseases. Stress-induced changes in the HHAS have been well studied. However, the role of the DKOS is unclear. Further studies of this system require generalization of existing published data on the physiological mechanisms and ethological characteristics of DKOS activation seen at different stages of the body’s development. The generalization provided here leads to the conclusion that the mode of the animal’s response to stimulation of the DKOS during early ontogeny differs from that in adults and changes depending on the stage of development of the stress reactivity system, at any particular period depending on whether the stress system had previously been activated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Zagrebin, M. Yu. Kapitonova, Z. Ch. Morozova, and T. S. Smirnova, “Morphofunctional aspects of poststress adaptation of the hypophyseal-adrenal system in the growing body,” Vestn. Volgograd. Gos. Med. Univ., No. 3, 65–68 (2007).

  2. O. E. Zubareva and V. M. Klimenko, “Increases in the proinflammatory cytokine levels at early ages as a risk factor for the development of nervous and mental pathology,” Ros. Fiziol. Zh., 97, No. 10, 1048–1059 (2011).

    CAS  Google Scholar 

  3. I. G. Sil’kis, “Effects of neuromodulators on synaptic plasticity in dopaminergic structures of the midbrain (a hypothetical mechanism),” Zh. Vyssh. Nerv. Deyat., 53, No. 4, 464–479 (2003).

    Google Scholar 

  4. A. Yu. Shevchenko, T. V. Yakovleva, E. N. Makarova, and N. M. Bazhan, “A stress-hyperresponsive period in the postnatal establishment of the hypothalamo-hypophyseal-adrenal system in mice,” Ros. Fiziol. Zh., 92, No. 11, 1351–1357 (2006).

    Google Scholar 

  5. R. F. Anda, C. L. Whitfield, V. J. Felitti, et al., “Adverse childhood experiences, alcoholic parents, and later risk of alcoholism and depression,” Psychiatr. Serv., 53, No. 8, 1001–1009 (2002).

    Article  PubMed  Google Scholar 

  6. R. I. Anderson, M. Morales, L. P. Spear, and E. I. Varlinskaya, “Pharmacological activation of kappa-opioid receptors: aversive effects in adolescent and adult male rats,” Psychopharmacology, 231, No. 8, 1687–1693 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R. I. Anderson, A. E. Agoglia, M. Morales, et al., “Stress, kappa-manipulations, and aversive effects of ethanol in adolescent and adult male rats,” Neuroscience, 249, 214–222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. G. A. Barr, S. Wang, and S. Carden, “Aversive properties of the κ-opioid agonist U50,488 in the week-old rat pup,” Psychopharmacology, 113, No. 3–4, 422–428 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. A. Bilkei-Gorzo, I. Racz, K. Michel, et al., “Control of hormonal stress reactivity by the endogenous opioid system,” Psychoneuroendocrinology, 33, No. 4, 425–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. C. A. Bolanos, G. M. Garmsen, M. A. Clair, and S. A. McDougall, “Effects of the κ-opioid receptor agonist U-50,488 on morphine-induced place preference conditioning in the develo** rat,” Eur. J. Pharmacol., 317, No. 1, 1–8 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. M. R. Bruchas and C. Chavkin, “Kinase cascades and ligand-directed signaling at the kappa-opioid receptor,” Psychopharmacology (Berl.), 210, No. 2, 137–147 (2010).

    Article  CAS  Google Scholar 

  12. M. R. Bruchas, B. B. Land, and C. Chavkin, “The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors,” Brain Res., 1314, 44–55 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. A. W. Bruijnzeel, “Kappa-opioid receptor signaling and brain reward function,” Brain Res. Rev., 62, No. 1, 127–146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. C. Butte, R. Kakihana, M. L. Farnham, and E. P. Noble, “The Relationship between brain and plasma corticosterone stress response in develo** rats,” Endocrinology, 92, No. 6, 1775–1779 (1973).

    Article  CAS  PubMed  Google Scholar 

  15. S. E. Carden, G. A. Barr, and M. A. Hofer, “Differential effects of specific opioid receptor agonists on rat pup isolation calls,” Brain Res. Dev. Brain Res., 62, No. 1, 17–22 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. L. L. Carpenter, J. P. Carlvalho, A. R. Tyrka, et al., “Decreased adrenocorticotropic hormone and cortisol responses to stress in healthy adults reporting significant childhood maltreatment,” Biol. Psychiatry, 62, No. 10, 1080–1087 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. C. Chavkin, I. F. James, and A. Goldstein, “Dynorphin is a specific endogenous ligand of the kappa-opioid receptor,” Science, 215, No. 4531, 413–4125 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. R. I. Cone, E. Weber, J. D. Barchas, and A. Goldstein, “Regional distribution of dynorphin and neo-endorphin peptides in rat brain, spinal cord, and pituitary,” J. Neurosci., 3, No. 11, 2146–2152 (1983).

    CAS  PubMed  Google Scholar 

  19. M. F. Dallman, “Early life stress: Nature and nurture,” Endocrinology, 155, No. 5, 1569–1572 (2014).

    Article  PubMed  Google Scholar 

  20. M. Davis and E. Emory, “Sex differences in neonatal stress reactivity,” Child Dev., 66, No. 1, 14–27 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. C. T. Drake, G. W. Terman, M. L. Simmons, et al., “Dynorphin opioids present in dentate granule cells may function as retrograde inhibitory neurotransmitters,” J. Neurosci., 14, No. 6, 3736–3750 (1994).

    CAS  PubMed  Google Scholar 

  22. M.-A. Enoch, “The role of early life stress as a predictor for alcohol and drug dependence,” Psychopharmacology (Berl.), 214, No. 1, 17–31 (2011).

    Article  CAS  Google Scholar 

  23. J. H. Fallon and F. M. Leslie, “Distribution of dynorphin and enkephalin peptides in the rat brain,” J. Comp. Neurol., 249, No. 3, 293–336 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. S. Flaisher-Grinberg, S. D. Persaud, H. H. Loh, and L.-N. Wei, “Stress-induced epigenetic regulation of κ-opioid receptor gene involves transcription factor c-Myc,” Proc. Natl. Acad. Sci. USA, 109, No. 23, 9167–9172 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Funada, T. Auzuki, M. Narita, et al., “Blockade of morphine reward through the activation of kappa-opioid receptors in mice,” Neuropharmacology, 32, No. 12, 1315–1323 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Y. P. Graham, C. Heim, S. H. Goodman, et al., “The effects of neonatal stress on brain development: implications for psychopathology,” Dev. Psychopathol., 11, No. 3, 545–565 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. K. M. A. Gudsnuk and F. A. Champagne, “Epigenetic effects of early developmental experiences,” Clin. Perinatol., 38, No. 4, 703–717 (2011).

    Article  PubMed  Google Scholar 

  28. M. R. Gunnar and K. M. Quevedo, “Early care experiences and HPA axis regulation in children: a mechanism for later trauma vulnerability,” Prog. Brain Res., 167, 137–149 (2008).

    Article  PubMed  Google Scholar 

  29. L. Gustafsson, S. Oreland, P. Hoffmann, and I. Nylander, “The impact of postnatal environment on opioid peptides in young and adult male Wistar rats,” Neuropeptides, 42, No. 2, 177–191 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. G. C. Haltmeyer, V. H. Denenberg, J. Thatcher, and M. X. Zarrow, “Response of the adrenal cortex of the neonatal rat after subjection to stress,” Nature, 212, No. 5068, 1371–1373(1966).

    Article  CAS  PubMed  Google Scholar 

  31. J. Herbert, “Cortisol and depression: three questions for psychiatry,” Psychol. Med., 43, No. 3, 449–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. G. O. Hjelmstad and H. L. Fields, “Kappa-opioid receptor activation in the nucleus accumbens inhibits glutamate and GABA release through different mechanisms,” J. Neurophysiol., 89, No. 5, 2389–2395 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. K. J. Iremonger and J. S. Bains, “Retrograde opioid signaling regulates glutamatergic transmission in the hypothalamus,” J. Neurosci., 29, No. 22, 7349–7358 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. E. T. Iwamoto, “Place-conditioning properties of mu, kappa, and sigma opioid agonists,” Alcohol Drug Res., 6, No. 5, 327–339 (1985).

    CAS  PubMed  Google Scholar 

  35. P. Kehoe and C. B. Boylan, “Behavioral effects of kappa-opioid-receptor stimulation on neonatal rats,” Behav. Neuroscience, 108, No. 2, 418–423 (1994).

  36. A. T. Knoll and W. A. Carlezon, “Dynorphin, stress, and depression,” Brain Res., 1314C, 56 (2010).

    Article  PubMed Central  Google Scholar 

  37. A. T. Knoll, J. W. Muschamp, S. E. Sillivan, et al., “Kappa-opioid receptor signaling in the basolateral amygdala regulates conditioned fear and anxiety in rats,” Biol. Psychiatry, 70, No. 5, 425–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. C. S. Konkoy and S. R. Childers, “Relationship between kappa1-opioid receptor binding and inhibition of adenylyl cyclase in guinea pig brain membranes,” Biochem. Pharmacol., 45, No. 1, 207–216 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. G. F. Koob, “Corticotropin-releasing factor, norepinephrine, and stress,” Biol. Psychiatry, 46, No. 9, 1167–1180 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. B. B. Land, M. R. Bruchas, J. C. Lemos, et al., “The Dysphoric component of stress is encoded by activation of the dynorphin κ-opioid system,” J. Neurosci., 28, No. 2, 407–414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. B. B. Land, M. R. Bruchas, S. Schattauer, et al., “Activation of the kappa-opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking,” Proc. Natl. Acad. Sci. USA, 106, No. 45, 19,168–19,173 (2009).

    Article  CAS  Google Scholar 

  42. M. L. Logrip, P. H. Janak, and D. Ron, “Blockade of ethanol reward by the kappa-opioid receptor agonist U50,488H,” Alcohol, 43, No. 5, 359–365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. P.-E. Lutz and B. L. Kieffer, “Opioid receptors: distinct roles in mood disorders,” Trends Neurosci., 36, No. 3, 195–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. P. O. McGowan, A. D’Alessio, S. Dymov, et al., “Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse,” Nature Neurosci., 12, No. 3, 342–348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. J. P. McLaughlin, B. B. Land, S. Li, et al., “Prior activation of kappa-opioid receptors by U50,488 mimics repeated forced swim stress to potentiate cocaine place preference conditioning,” Neuropsychopharmacology, 31, No. 4, 787–794 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. C. K. Meshul and J. F. McGinty, “Kappa-opioid receptor immunoreactivity in the nucleus accumbens and caudate-putamen is primarily associated with synaptic vesicles in axons,” Neuroscience, 96, No. 1, 91–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. C. C. Michaels and S. G. Holtzman, “Early postnatal stress alters place conditioning to both and κ-opioid agonists,” J. Pharmacol. Exp. Ther., 325, No. 1, 313–318 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. R. S. Miranda-Morales, N. E. Spear, M. E. Nizhnikov, et al., “Role of mu, delta and kappa-opioid receptors in ethanol-reinforced operant responding in infant rats,” Behav. Brain Res., 234, No. 2, 267–277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. S. Moriceau, T. L. Roth, T. Okotoghaide, and R. M. Sullivan, “Corticosterone controls the developmental emergence of fear and amygdala function to predator odors in infant rat pups,” Int. J. Dev. Neurosci., 22, No. 5–6, 415–422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. R. F. Mucha and A. Herz, “Motivational properties of kappa- and mu-opioid receptor agonists studied with place and taste preference conditioning,” Psychopharmacol. (Berl.), 86, No. 3, 274–280 (1985).

    Article  CAS  Google Scholar 

  51. K. E. Nikolarakis, O. F. X. Almeida, and A. Herz, “Stimulation of hypothalamic β-endorphin and dynorphin release by corticotropin-releasing factor (in vitro),” Brain Res., 399, No. 1, 152–155 (1986).

    Article  CAS  PubMed  Google Scholar 

  52. M. E. Nizhnikov, R. M. Pautassi, E. Varlinskaya, et al., “Ontogenetic differences in ethanol’s motivational properties during infancy,” Alcohol, 46, No. 3, 225–234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. N. E. Ordyan, S. G. Pivina, V. V. Rakitskaya, and V. G. Shalyapina, “The neonatal glucocorticoid treatment-produced long-term changes of the pituitary-adrenal function and brain corticosteroid receptors in rats,” Steroids, 66, No. 12, 883–888 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. R. M. Pautassi, M. E. Nizhnikov, M. B. Acevedo, and N. E. Spear, “Early role of the κ-opioid receptor in ethanol-induced reinforcement,” Physiol. Behav., 105, No. 5, 1231–1241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. E. S. Petrov, M. E. Nizhnikov, E. I. Varlinskaya, and N. E. Spear, “Dynorphin A (1-13) and responsiveness of the newborn rat to a surrogate nipple: Immediate behavioral consequences and reinforcement effects in conditioning,” Behav. Brain Res., 170, No. 1, 1–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. K. Ploj, E. Roman, and I. Nylander, “Long-term effects of short and long periods of maternal separation on brain opioid peptide levels in male Wistar rats,” Neuropeptides, 37, No. 3, 149–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. K. Ploj, E. Roman, and I. Nylander, “Long-term effects of maternal separation on ethanol intake and brain opioid and dopamine receptors in male Wistar rats,” Neuroscience, 121, No. 3, 787–799 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. K. I. Eusain, D. R. Giovannucci, E. L. Stuenkel, and H. C. Moises, “κ-Opioid receptor activation modulates Ca2+ currents and secretion in isolated neuroendocrine nerve terminals,” J. Neurosci., 17, No. 17, 6565–6574 (1997).

    Google Scholar 

  59. M. M. Sánchez, P. M. Noble, C. K. Lyon, et al., “Alterations in diurnal cortisol rhythm and acoustic startle response in nonhuman primates with adverse rearing,” Biol. Psychiatry, 57, No. 4, 373–381 (2005).

    Article  PubMed  Google Scholar 

  60. R. M. Sapolsky and M. J. Meaney, “Maturation of the adrenocortical stress response: Neuroendocrine control mechanisms and the stress hyporesponsive period,” Brain Res. Rev., 11, No. 1, 65–76 (1986).

    Article  CAS  Google Scholar 

  61. S. Schapiro, “Pituitary ACTH and compensatory adrenal hypertrophy in stress-non-responsive infant rats,” Endocrinology, 71, 986–989 (1962).

    Article  CAS  PubMed  Google Scholar 

  62. M. Schmidt, L. Enthoven, M. van der Mark, et al., “The postnatal development of the hypothalamic-pituitary-adrenal axis in the mouse,” Int. J. Dev. Neurosci., 21, No. 3, 125–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. N. M. Schoenfeid, J. Leathern, and J. Rabii, “Maturation of adrenal stress responsiveness in the rat,” Neuroendocrinology, 31, No. 2, 101–105 (1980).

    Article  Google Scholar 

  64. A. N. M. Schoffelmeer, K. C. Rice, A. E. Jacobson, et al., “μ-, δ- and κ-opioid receptor-mediated inhibition of neurotransmitter release and adenylate cyclase activity in rat brain slices: studies with fentanyl isothiocyanate,” Eur. J. Pharmacol., 154, No. 2, 169–178 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. T. S. Shippenberg, A. LeFevour, and A. C. Thompson, “Sensitization to the conditioned rewarding effects of morphine and cocaine: differential effects of the κ-opioid receptor agonist U69593,” Eur. J. Pharmacol., 345, No. 1, 27–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. T. S. Shippenberg and A. Herz, “Place preference conditioning reveals the involvement of D1-dopamine receptors in the motivational properties of μ- and κ-opioid agonists,” Brain Res., 436, No. 1, 169–172 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. T. S. Shippenberg, A. LeFevour, and C. Heidbreder, “Kappa-opioid receptor agonists prevent sensitization to the conditioned rewarding effects of cocaine,” J. Pharmacol. Exp. Ther., 276, No. 2, 545–554 (1996).

    CAS  PubMed  Google Scholar 

  68. T. S. Shippenberg, A. Zapata, and V. I. Chefer, “Dynorphin and the pathophysiology of drug addiction,” Pharmacol. Ther., 116, No. 2, 306–321 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. M. L. Simmons and C. Chavkin, “κ-Opioid receptor activation of a dendrotoxin-sensitive potassium channel mediates presynaptic inhibition of mossy fiber neurotransmitter release,” Mol. Pharmacol., 50, No. 1, 80–85 (1996).

    CAS  PubMed  Google Scholar 

  70. M. L. Simmons, G. W. Terman, S. M. Gibbs, and C. Chavkin, “L-type calcium channels mediate dynorphin neuropeptide release from dendrites but not axons of hippocampal granule cells,” Neuron, 14, No. 6, 1265–1272 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. R. E. Sperling, S. M. Gomes, E. I. Sypek, et al., “Endogenous kappa-opioid mediation of stress-induced potentiation of ethanol-conditioned place preference and self-administration,” Psychopharmacology, 210, No. 2, 199–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. R. M. Sullivan and P. J. Holman, “Transitions in sensitive period attachment learning in infancy: The role of corticosterone,” Neurosci. Biobehav. Rev., 34, No. 6, 835–844 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. T. Suzuki, Y. Shiozaki, Y. Masukawa, et al., “The role of mu- and kappa-opioid receptors in cocaine-induced conditioned place preference,” Jpn. J. Pharmacol., 58, No. 4, 435–442 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. A. L. Svingos, E. E. O. Colago, and V. M. Pickel, “Cellular sites for dynorphin activation of κ-opioid receptors in the rat nucleus accumbens shell,” J. Neurosci., 19, No. 5, 1804–1813 (1999).

    CAS  PubMed  Google Scholar 

  75. A. R. Tarullo and M. R. Gunnar, “Child maltreatment and the develo** HPA axis,” Horm. Behav., 50, No. 4, 632–639 (2006).

    Article  PubMed  Google Scholar 

  76. H. A. Tejeda, T. S. Shippenberg, and R. Henriksson, “The dynorphin/ κ-opioid receptor system and its role in psychiatric disorders,” Cell. Mol. Life Sci., 69, No. 6, 857–896 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. G. E. Tietjen and B. L. Peterlin, “Childhood abuse and migraine: epidemiology, sex differences, and potential mechanisms,” Headache, 51, No. 6, 869–879 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. P. K. Trickett, J. G. Noll, E. J. Sumann, et al., “Attenuation of cortisol across development for victims of sexual abuse,” Dev. Psychopathol., 22, No. 1, 165–175 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Y. Watanabe, N. G. Weiland, and B. S. McEwen, “Effects of adrenal steroid manipulations and repeated restraint stress on dynorphin mRNA levels and excitatory amino acid receptor binding in hippocampus,” Brain Res., 680, No. 1–2, 217–225 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. I. C. G. Weaver, “Sha** adult phenotypes through early life environments,” Birth Defects Res. Part C: Embryo Today, 87, No. 4, 314–326 (2009).

    Article  CAS  Google Scholar 

  81. S. Wee and G. F. Koob, “The role of the dynorphin K-opioid system in the reinforcing effects of drugs of abuse,” Psychopharmacology, 210, No. 2, 121–135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. M. Weinstock, “Gender differences in the effects of prenatal stress on brain development and behaviour,” Neurochem. Res., 32, No. 10, 1730–1740 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. M. F. Weisskopf, R. A. Zalutsky, and R. A. Nicoll, “The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation,” Nature, 362, 423–427 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. C. P. Wiedenmayer, “Plasticity of defensive behavior and fear in early development,” Neurosci. Biobehav. Res., 33, No. 3, 432–441 (2009).

    Article  Google Scholar 

  85. Y. Wu, A. V. Patchev, G. Daniel, et al., “Early-life stress reduces DNA methylation of the pomc gene in male mice,” Endocrinology, 155, No. 5, 1751–1762 (2014).

    Article  PubMed  Google Scholar 

  86. T. Yakovleva, I. Bazov, G. Cebers, et al., “Prodynorphin storage and processing in axon terminals and dendrites,” FASEB J., 20, No. 12, 2124–2126 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. T. Yakovleva, Z. Marinova, A. Kuzmin, et al., “Dysregulation of dynorphins in Alzheimer disease,” Neurobiol. Aging, 28, No. 11, 1700–1708 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Z. B. You, M. Herrera-Marschitz, and L. Terenius, “Modulation of neurotransmitter release in the basal ganglia of the rat brain by dynorphin peptides,” J. Pharmacol. Exp. Ther., 290, No. 3, 1307–1315 (1999).

    CAS  PubMed  Google Scholar 

  89. T. Y. Zhang, B. Labonté, W. L. Wen, et al., “Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans,” Neuropsychopharmacology, 38, No. 1, 111–123 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Y. Zhang, E. R. Butelman, S. D. Schlussman, et al., “Effects of the plant-derived hallucinogen salvinorin A on basal dopamine levels in the caudate putamen and in a conditioned place aversion assay in mice: agonist actions at kappa-opioid receptors,” Psychopharmacology, 179, No. 3, 551–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Y. Zhang, E. R. Butelman, S. D. Schlussman, et al., “Effect of the endogenous κ-opioid agonist dynorphin A(1-17) on cocaine-evoked increases in striatal dopamine levels and cocaine-induced place preference in C57BL/6J mice,” Psychopharmacology, 172, No. 4, 422–429 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Y. Zhang, E. R. Butelman, S. D. Schlussman, et al., “Effect of the kappa-opioid agonist R-84760 on cocaine-induced increases in striatal dopamine levels and cocaine-induced place preference in C57BL/6J mice,” Psychopharmacology (Berl.), 173, No. 1–2, 146–152 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Mukhin.

Additional information

A. P. Kozlov is deceased.

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 101, No. 3, pp. 268–278, March, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhin, V.N., Abdurasulova, I.N., Pavlov, K.I. et al. Effects of Activation of κ-Opioid Receptors on Behavior during Postnatal Formation of the Stress Reactivity Systems. Neurosci Behav Physi 46, 626–631 (2016). https://doi.org/10.1007/s11055-016-0288-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0288-8

Keywords

Navigation