Log in

Asymmetry of the amplitude-time properties of directed saccades in monkeys depending on the complexity of the spatial scheme of visual stimulation

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Three Macaca rhesus monkeys were used for studies of the performance of visually evoked saccades in single-step changes in the position of a stimulus using standard schemes for presentation of GAP-OVERLAP stimuli. Two spatial schemes were used: presentation of stimuli along the horizontal meridian (one-dimensional) and presentation of stimuli within a rectangular area of the visual field (two-dimensional). Asymmetrical foci of short-and long-latency saccades were found in the visual field. Dispersion factor analysis demonstrated that the dimensionality factor (one-dimensional versus two-dimensional stimulation schemes) had greater effects on the latent period of saccades than the lateralization factor (presentation on the left or right sides of the gaze point). The precision of the performance of visually evoked saccades decreased with increases in its eccentricity in both spatial stimulation schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Tereshchenko, Asymmetry in Measures of Saccade and Hand Movements in Monkeys in Normal Conditions and Pathology [in Russian], Moscow State University, Moscow (1999).

    Google Scholar 

  2. L. V. Tereshchenko, Yu. B. Kuznetsov, A. V. Latanov, and V. V. Shul’govskii, “A method for the chronic electromagnetic recording of eye and head movements in monkeys,” Zh. Vyssh. Nerv. Deyat., 50, No. 5, 889–894 (2000).

    CAS  Google Scholar 

  3. W. Becker and R. Jurgens, “Human oblique saccades: quantitative analysis of the relation between horizontal and vertical components,” Vision Res., 30, 893–920 (1990).

    Article  PubMed  CAS  Google Scholar 

  4. R. Boch and B. Fischer, “Further observations on the occurrence of express-saccades in the monkey,” Exptl. Brain Res., 63, 487–494 (1986).

    Article  CAS  Google Scholar 

  5. R. M. Bracewell, M. Husain, and J. F. Stein, “Specialization of the right hemisphere for visuomotor control,” Neuropsychologia, 28, No. 8, 763–775 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. D. Braun and B. G. Breitmeyer, “Relationship between directed visual attention and saccadic reaction times,” Exptl. Brain Res., 73, 546–552 (1988).

    Article  CAS  Google Scholar 

  7. M. L. Cheal and D. Lyon, “Attention effects on form discrimination at different eccentricities,” Quart. J. Exptl. Psychol. [A], 41, 719–746 (1989).

    CAS  Google Scholar 

  8. H. Collewijn, C. J. Erkelens, and R. M. Steinman, “Binocular coordination of human vertical saccadic eye movements,” J. Physiol. (England), 404, 183–197 (1988).

    CAS  Google Scholar 

  9. T. J. Crawford and H. J. Muller, “Spatial and temporal effects of spatial attention on human saccadic eye movements,” Vision Res., 32, 293–304 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. E. de Renzi, A. Colombo, P. Faglioni, and M. Bibertoni, “Conjugate gaze paresis in stroke patients with unilateral damage. An unexpected instance of hemispheric asymmetry,” Arch. Neurol., 39, 482–486 (1982).

    PubMed  Google Scholar 

  11. H. Deubel and W. X. Schneider, “Saccade target selection and object recognition: evidence for a common attentional mechanism,” Vision Res., 36, No. 12, 1827–1837 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. D. Falk, C. Hildebolt, J. Cheverud, M. Vannier, R. C. Helmkamp, and L. Konigsberg, “Cortical asymmetries in frontal lobes of rhesus monkeys (Macaca mulatta),” Brain Res., 512, 40–45 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. B. Fischer and R. Boch, “Saccadic eye movements after extremely short reaction times in the monkey,” Brain Res., 260, 21–26 (1983).

    Article  PubMed  CAS  Google Scholar 

  14. B. Fischer and E. Ramsperger, “Human express saccades: effects of randomization and daily practice,” Exptl. Brain Res., 64, No. 3, 569–578 (1986).

    Article  CAS  Google Scholar 

  15. B. Fischer, “The preparation of visually guided saccades,” Rev. Physiol. Biochem. Pharmacol., 106, 1–35 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. G. M. Galeazzi, C. Mucignat, C. Barbieri, G. Rizzolatti, and C. Umilta, “Orientation strategy implicit in spatial attention,” Boll. Soc. Ital. Biol. Sper., 67, 629–634 (1991).

    PubMed  CAS  Google Scholar 

  17. H. C. Hughes and L. D. Zimba, “Spatial maps of directed visual attention,” J. Exptl. Psychol. (Human Perception), 11, 409–430 (1985).

    Article  CAS  Google Scholar 

  18. J. T. Hutton and J. Palet, “Lateral saccadic latencies and handedness,” Neuropsychologia, 24, No. 3, 449–451 (1986).

    Article  PubMed  CAS  Google Scholar 

  19. J. W. Jutai, “Cerebral asymmetry and the psychophysiology of attention,” Int. J. Psychophysiol., 1, 219–225 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. E. Ladavas, M. del Pesce, and L. Provinciali, “Unilateral attention deficits and hemispheric asymmetries in the control of visual attention,” Neuropsychologia, 27, 353–366 (1989).

    Article  PubMed  CAS  Google Scholar 

  21. J. C. Lynch and J. W. McLaren, “Deficits of visual attention and saccadic eye movements after lesions of parieto-occipital cortex in monkeys,” J. Neurophysiol., 61, 74–90 (1989).

    PubMed  CAS  Google Scholar 

  22. G. R. Mangun and S. A. Hillyard, “Spatial gradients of visual attention: behavioral and electrophysiological evidence,” EEG Clin. Neurophysiol., 70, 417–428 (1988).

    Article  CAS  Google Scholar 

  23. R. D. Rafal, M. I. Posner, J. F. Friedman, A. W. Inhoff, and E. Bernstein, “Orienting of visual attention in progressive supranuclear palsy,” Brain, 111, 267–280 (1988).

    PubMed  Google Scholar 

  24. T. Sato, “Effects of attention and stimulus interaction on visual responses of inferior temporal neurons in macaque,” J. Neurophysiol., 60, 344–364 (1988).

    PubMed  CAS  Google Scholar 

  25. J. D. Schall and N. P. Bichot, “Neural correlates of visual and motor decision processes,” Curr. Opin. Neurobiol., 8, 211–217 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. D. Sparks, W. H. Rohrer, and Y. Zhang, “The role of the superior colliculus in saccade initiation: a study of express saccades and the gap effect,” Vision Res., 40, No. 20, 2763–2777 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. D. C. van Essen, W. T. Newsome, and J. H. Maunsell, “The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability,” Vision Res., 24, 429–448 (1984).

    Article  PubMed  Google Scholar 

  28. D. M. Westine and J. D. Enderle, “The generation of horizontal off-center saccades,” Biomed. Sci. Instrum., 27, 171–180 (1991).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 55, No. 5, pp. 639–646, September–October, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tereshchenko, L.V., Molchanov, S.A., Kolesnikova, O.V. et al. Asymmetry of the amplitude-time properties of directed saccades in monkeys depending on the complexity of the spatial scheme of visual stimulation. Neurosci Behav Physiol 36, 863–869 (2006). https://doi.org/10.1007/s11055-006-0100-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-006-0100-2

Key words

Navigation