Log in

Geophysical Data Inversion in a Gold-Rich Porphyry System: A Case Study of the Dalli Deposit, Iran

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Obtaining spatial correlation between estimated physical parameters and corresponding lithological features is always challenging in geophysical exploration. This research provides various estimated geophysical models at two porphyry centers in the Dalli Cu–Au deposit in central Iran to characterize hydrothermal alteration zones, host lithologies, and mineralization. The dataset used in this research consists of ground magnetic and direct current electrical resistivity and induced polarization data and core drilling geochemical analyses. Constraints such as appropriate depth weighting via calculation of the power spectrum and Euler deconvolution of the magnetic data were used to relieve the non-uniqueness nature of magnetic data inversion. The resulting estimated models from 3D inversion of magnetic data to 2D inversion of direct current electrical resistivity and induced polarization data inversion indicated that higher chargeability zones and strong copper and Au mineralization zones are spatially associated with a significant modulus of magnetic susceptibility gradient. The models also confirm the presence of a U-shape pyrite shell at the Dalli porphyry deposit. Overlaying the geochemical drilling data on this shell showed that the inner boundaries correspond well with the zones of significant Cu–Au mineralization. Comparing the geophysical models with the host lithologies indicated that the inner part of the primary quartz diorite porphyry as the host rock dominantly has potassic alteration, with lower Cu–Au grades, higher magnetic susceptibility, and lower resistivity. In contrast, the main Cu–Au mineralization concentration occurs between the quartz diorite intrusion and the pyrite shell that is located mainly in the wall rock andesite porphyries, where magnetic susceptibility is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Similar content being viewed by others

References

  • Anderson, E. D., Yager, D. B., Deszcz-Pan, M., Hoogenboom, B. E., Rodriguez, B. D., & Smith, B. D. (2022). Geophysical data provide three dimensional insights into porphyry copper systems in the Silverton caldera, Colorado, USA. Ore Geology Reviews, 152, 105223.

    Google Scholar 

  • Asadi, H. H., Porwal, A., Fatehi, M., Kianpouryan, S., & Lu, Y. (2015). Exploration feature selection applied to hybrid data integration modeling: Targeting copper-gold potential in central Iran. Ore Geology Reviews, 71, 819–838.

    Google Scholar 

  • Asadi, H. H., Sansoleimani, A., Fatehi, M., & Carranza, E. J. M. (2016). An AHP–TOPSIS predictive model for district-scale map** of porphyry Cu–Au potential: A case study from Salafchegan area (central Iran). Natural Resources Research, 25(4), 417–429.

    Google Scholar 

  • Ayati, F., Yavuz, F., Asadi, H. H., Richards, J. P., & Jourdan, F. (2013). Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper–gold deposit, Markazi Province, Iran. International Geology Review, 55(2), 158–184.

    Google Scholar 

  • Ayati, F., Yavuz, F., Noghreyan, M., Haroni, H. A., & Yavuz, R. (2008). Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Mineralogy and Petrology, 94(1), 107–122.

    Google Scholar 

  • Baranov, V. (1957). A new method for interpretation of aeromagnetic maps: Pseudo-gravimetric anomalies. Geophysics, 22(2), 359–382.

    Google Scholar 

  • Behn, G., Camus, F., Carrasco, P., & Ware, H. (2001). Aeromagnetic signature of porphyry copper systems in northern Chile and its geologic implications. Economic Geology, 96(2), 239–248.

    Google Scholar 

  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250.

    Google Scholar 

  • Clark, D. A. (2014). Magnetic effects of hydrothermal alteration in porphyry copper and iron-oxide copper–gold systems: A review. Tectonophysics, 624, 46–65.

    Google Scholar 

  • Clark, D. A., French, D. H., Lackie, M. A., & Schmidt, P. W. (1992). Magnetic petrology: Application of integrated rock magnetic and petrological techniques to geological interpretation of magnetic surveys. Exploration Geophysics, 23(2), 65–68.

    Google Scholar 

  • Cooke, D. R., Baker, M., Hollings, P., Sweet, G., Chang, Z., Danyushevsky, L., Gilbert, S., Zhou, T., White, N., Gemmell, J. B., & Inglis, S. (2014). New advances in detecting the distal geochemical footprints of porphyry systems—Epidote mineral chemistry as a tool for vectoring and fertility assessments. SEG Special Publication, 18, 127–152.

    Google Scholar 

  • Darabi-Golestan, F., Ghavami-Riabi, R., & Asadi-Harooni, H. (2013). Alteration, zoning model, and mineralogical structure considering lithogeochemical investigation in Northern Dalli Cu–Au porphyry. Arabian Journal of Geosciences, 6(12), 4821–4831.

    Google Scholar 

  • Dentith, M., & Mudge, S. T. (2014). Geophysics for the mineral exploration geoscientist. Cambridge University Press.

    Google Scholar 

  • Fatehi, M., & Asadi, H. H. (2017a). Application of semi-supervised fuzzy c-means method in clustering multivariate geochemical data, a case study from the Dalli Cu–Au porphyry deposit in central Iran. Ore Geology Reviews, 81, 245–255.

    Google Scholar 

  • Fatehi, M., & Asadi, H. H. (2017b). Data integration modeling applied to drill hole planning through semi-supervised learning: A case study from the Dalli Cu–Au porphyry deposit in the central Iran. Journal of African Earth Sciences, 128, 147–160.

    Google Scholar 

  • Fullagar, P. K., Pears, G. A., & McMonnies, B. (2008). Constrained inversion of geologic surfaces—Pushing the boundaries. The Leading Edge, 27(1), 98–105.

    Google Scholar 

  • Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., & Robert, F. (1998). Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1–5), 7–27.

    Google Scholar 

  • Hassanpour, S., Bayraktutan, M. S., & Komatina, S. (2022). Application of the magnetic geophysical method to exploration of the potassic zone in some porphyry copper deposits (Iran). First Break, 40(8), 91–96.

    Google Scholar 

  • Hedenquist, J. W., Taguchi, S., & Shinohara, H. (2018). Features of large magmatic–hydrothermal systems in Japan: Characteristics similar to the tops of porphyry copper deposits. Resource Geology, 68(2), 164–180.

    Google Scholar 

  • Holden, E. J., Fu, S. C., Kovesi, P., Dentith, M., Bourne, B., & Hope, M. (2011). Automatic identification of responses from porphyry intrusive systems within magnetic data using image analysis. Journal of Applied Geophysics, 74(4), 255–262.

    Google Scholar 

  • Holliday, J. R., & Cooke, D. R. (2007). Advances in geological models and exploration methods for copper ± gold porphyry deposits. Proceedings of Exploration, 7, 791–809.

    Google Scholar 

  • Hope, M., & Andersson, S. (2016). The discovery and geophysical response of the Atlántida Cu–Au porphyry deposit, Chile. Exploration Geophysics, 47(3), 237–247.

    Google Scholar 

  • Hoschke, T. (2011). Geophysical signatures of copper-gold porphyry and epithermal gold deposits, and implications for exploration: Ph.D. thesis, University of Tasmania

  • Howe, B., & Kroll, A. (2010). The geophysical response of the Tupinda Cu–Au–Mo porphyry prospect, Tabar Islands, Papua New Guinea. ASEG Extended Abstracts, 2010(1), 1–5. https://doi.org/10.1081/22020586.2010.12041935

    Article  Google Scholar 

  • James, A. H. (1971). Hypothetical diagrams of several porphyry copper deposits. Economic Geology, 66(1), 43–47.

    Google Scholar 

  • John, D. A., Ayuso, R. A., Barton, M. D., Blakely, R. J., Bodnar, R. J., Dilles, J. H., Gray, F., Graybeal, F. T., Mars, J. C., McPhee, D. K., Seal, R. R., Taylor, R. D., & Vikre, P. G. (2010). Porphyry copper deposit model, chap. B of Mineral deposit models for resource assessment. U.S. Geological Survey Scientific Investigations Report 2010-5070-B. https://doi.org/10.3133/sir20105070B

    Article  Google Scholar 

  • Kesler, S. E., Chryssoulis, S. L., & Simon, G. (2002). Gold in porphyry copper deposits: Its abundance and fate. Ore Geology Reviews, 21(1–2), 103–124.

    Google Scholar 

  • Khalil, Y. S., Wenyuan, L., Huang, J., Abbas, S. A., & Jun, H. (2022). Geophysical exploration and geological appraisal of the Siah Diq porphyry Cu–Au prospect: A recent discovery in the Chagai volcano magmatic arc, SW Pakistan. Open Geosciences, 14(1), 1250–1267.

    Google Scholar 

  • Li, X. (2003). On the use of different methods for estimating magnetic depth. The Leading Edge, 22(11), 1090–1099.

    Google Scholar 

  • Li, Y., & Oldenburg, D. W. (1996). 3-D inversion of magnetic data. Geophysics, 61(2), 394–408.

    Google Scholar 

  • Li, Y., & Oldenburg, D. W. (2003). Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophysical Journal International, 152(2), 251–265.

    Google Scholar 

  • Lowell, J. D., & Guilbert, J. M. (1970). Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology, 65(4), 373–408.

    Google Scholar 

  • Lü, Q., Qi, G., & Yan, J. (2013). 3D geologic model of Shizishan ore field constrained by gravity and magnetic interactive modeling: A case history. Geophysics, 78(1), B25–B35.

    Google Scholar 

  • Mosusu, N., Bokuik, A., Petterson, M., & Holm, R. (2021). Stream sediment datasets and geophysical anomalies: A recipe for porphyry copper systems identification—The eastern Papuan peninsula experience. Geosciences, 11(7), 299.

    Google Scholar 

  • Motlagh, Z. K., Rasti, A., & Safaei, S. (2022). Geology, geochemistry and geophysical studies in exploration of copper and iron reserves: A case study. Technium EcoGeoMarine, 1(1), 1–19.

    Google Scholar 

  • Nabighian, M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507–517.

    Google Scholar 

  • Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., Phillips, J. D., & Ruder, M. E. (2005). The historical development of the magnetic method in exploration. Geophysics, 70(6), 33ND-61ND.

    Google Scholar 

  • Nguimatsia, F. W. D., Bolarinwa, A. T., Yongue, R. F., de Dieu Ndikumana, J., Olajide-Kayode, J. O., Olisa, O. G., Abdu-Salam, M. O., Kamga, M. A., & Djou, E. S. (2017). Diversity of gold deposits, geodynamics and conditions of formation: A perspective view. Open Journal of Geology, 7(11), 1690.

    Google Scholar 

  • Oldenburg, D. W., & Li, Y. (1994). Inversion of induced polarization data. Geophysics, 59(9), 1327–1341.

    Google Scholar 

  • Oldenburg, D. W., & Li, Y. (2005). Inversion for applied geophysics: A tutorial. Near-Surface Geophysics. https://doi.org/10.1190/1.9781560801719.ch5

    Article  Google Scholar 

  • Oldenburg, D. W., & Pratt, D. A. (2007). Geophysical inversion for mineral exploration: A decade of progress in theory and practice. In Proceedings of exploration 07: Fifth decennial international conference on mineral exploration, pp. 61–95.

  • Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55(1), 80–91.

    Google Scholar 

  • Richards, J. P., & Mumin, A. H. (2013). Magmatic-hydrothermal processes within an evolving Earth: Iron oxide-copper-gold and porphyry Cu ± Mo ± Au deposits. Geology, 41(7), 767–770.

    Google Scholar 

  • Rose, A. W. (1970). Zonal relations of wallrock alteration and sulfide distribution at porphyry copper deposits. Economic Geology, 65(8), 920–936.

    Google Scholar 

  • Sillitoe, R. H. (1973). The tops and bottoms of porphyry copper deposits. Economic Geology, 68(6), 799–815.

    Google Scholar 

  • Sillitoe, R. H. (2000). Gold-rich porphyry deposits: Descriptive and genetic models and their role in exploration and discovery. Reviews in Economic Geology, 13, 315–345.

    Google Scholar 

  • Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105(1), 3–41.

    Google Scholar 

  • Silva, J. B. C., Medeiros, W. E., & Barbosa, V. C. F. (2001). Potential-field inversion: Choosing the appropriate technique to solve a geologic problem. Geophysics, 66(2), 511–520.

    Google Scholar 

  • Singer, D. A., Berger, V. I., & Moring, B. C., (2008). Porphyry copper deposits of the world: Database and grade and tonnage models. USGS Open-File Report 2008-1155. USGS, Reston, VA, USA.

  • Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35(2), 293–302.

    Google Scholar 

  • Thompson, D. T. (1982). EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47(1), 31–37.

    Google Scholar 

  • Wondimu, H. D., Mammo, T., & Webster, B. (2018). 3D joint inversion of Gradient and Mise-à-la-Masse borehole IP/Resistivity data and its application to magmatic sulfide mineral deposit exploration. Acta Geophysica, 66(5), 1031–1045.

    Google Scholar 

  • Woodall, R. (1994). Empiricism and concept in successful mineral exploration. Australian Journal of Earth Sciences, 41(1), 1–10.

    Google Scholar 

  • Xu, B., Hou, Z. Q., Griffin, W. L., O’Reilly, S. Y., Zheng, Y. C., Wang, T., & Xu, J. F. (2022). In-situ mineralogical interpretation of the mantle geophysical signature of the Gangdese Cu-porphyry mineral system. Gondwana Research, 111, 53–63.

    Google Scholar 

  • Zhang, Z., Wang, G., Ding, Y., & Carranza, E. J. M. (2021). 3D mineral exploration targeting with multi-dimensional geoscience datasets, Tongling Cu (-Au) District, China. Journal of Geochemical Exploration, 221, 106702.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Iranian Copper Industry Company (NICICO), Dorsa Pardaze company, and Petro Anahita company for accessing the geophysical, geological, and drill holes data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayyed Mohammad Abtahi Forooshani.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest and received no financial funding for this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshtaghian, K., Hajheidari, M., Abtahi Forooshani, S.M. et al. Geophysical Data Inversion in a Gold-Rich Porphyry System: A Case Study of the Dalli Deposit, Iran. Nat Resour Res 32, 501–522 (2023). https://doi.org/10.1007/s11053-023-10165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10165-9

Keywords

Navigation