Log in

Uncertainty Analysis of Geochemical Anomaly by Combining Sequential Indicator Co-simulation and Local Singularity Analysis

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Accurate characterization of geochemical anomaly related to metal mineralization and quantification of uncertainty propagation in space prediction are important for assessment of geochemical exploration risk. In this study, an efficient method that integrates sequential indicator co-simulation (SIcS) with local singularity analysis (LSA) is presented to characterize uncertainty propagation in geochemical anomaly and to construct exploration risk-related probability expression model. The method yields a series of realizations to reproduce some expected statistical and spatial characteristics including spatial correlation structure and the expected fluctuations between these realizations. The advantage of the method is that, in the uncertainty evaluation of geochemical anomaly, an auxiliary variable can be incorporated into rebuilding the spatial structure of the primary variable. To demonstrate the proposed method, a case study for uncertainty analysis of iron mineralization-related geochemical anomalies was conducted in the Chinese Western Tianshan region. Two variables, Fe2O3 and Ti, were considered in the case study. Under the constraint of covariate Ti, uncertainty analysis of Fe2O3 anomaly was investigated by integrating SIcS with LSA. In comparison with SIS, the results indicate that SIcS is superior to SIS in modeling Fe2O3 concentrations and in enhancing local anomalies when the auxiliary variable Ti was considered to restore the spatial structure of the primary variable Fe2O3. The results show that areas with high probability values have strong spatial consistency with the known iron ore locations. Therefore, the method proposed in this study helps greatly in delineation of areas with high probability of metal mineralization and in assessment of geochemical prospecting risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  • Afzal, P., Madani, N., Shahbeik, S., & Yasrebi, A. B. (2015). Multi-Gaussian kriging: A practice to enhance delineation of mineralized zones by concentration-volume fractal model in Dardevey iron ore deposit, SE Iran. Journal of Geochemical Exploration, 158, 10–21.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511.

    Article  Google Scholar 

  • Cattle, J. A., McBratney, A. B., & Minasny, B. (2002). Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination. Journal of Environmental Quality, 31(5), 1576–1588.

    Article  Google Scholar 

  • Chen, G., & Cheng, Q. (2016). Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration. Computers & Geosciences, 87, 56–66.

    Article  Google Scholar 

  • Chen, Z., Cheng, Q., Chen, J., & ** local singularities from geochemical data. Nonlinear Processes in Geophysics, 14(3), 317–324.

    Article  Google Scholar 

  • Cheng, Q. (1999). Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration, 65(3), 175–194.

    Article  Google Scholar 

  • Cheng, Q. (2007). Map** singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1), 314–324.

    Article  Google Scholar 

  • Cheng, Q. (2016). Fractal density and singularity analysis of heat flow over ocean ridges. Scientific Reports, 6, 19167.

    Article  Google Scholar 

  • Coleman, R. G. (1989). Continental growth of northwest China. Tectonics, 8, 621–635.

    Article  Google Scholar 

  • de Sá, V. R., Koike, K., Goto, T. N., Nozaki, T., Takaya, Y., & Yamasaki, T. (2020). A combination of geostatistical methods and principal components analysis for detection of mineralized zones in seafloor hydrothermal systems. Natural Resources Research, 30(4), 2875–2887.

  • Deutsch, C. V., & Journel, A. G. (1998). Geostatistical software library and user’s guide. Oxford University Press.

    Google Scholar 

  • Dong, L. H., Feng, J., Zhuang, D., Li, F., Qu, X., Liu, D., & Tang, Y. L. (2011). Discussion of metallogenic models, mineralization characteristic and main type of rich iron ore of **njiang. **njiang Geology, 29(4), 416–422. (in Chinese with English abstract).

    Google Scholar 

  • Emery, X. (2012). Co-simulating total and soluble copper grades in an oxide ore deposit. Mathematical Geosciences, 44(1), 27–46.

    Article  Google Scholar 

  • Ersoy, A., & Yunsel, T. Y. (2019). Geochemical modelling and map** of Cu and Fe anomalies in soil using combining sequential Gaussian co-simulation and local singularity analysis: A case study from Dedeyazı (Malatya) region, SE Turkey. Geochemistry: Exploration, Environment, Analysis, 19(4), 331–342.

    Google Scholar 

  • Gao, J., Long, L., Klemd, R., Qian, Q., Liu, D., **ong, X., & Yang, F. (2009). Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks. International Journal of Earth Sciences, 98(6), 1221–1238.

    Article  Google Scholar 

  • Ge, S., Zhai, M., Safonova, I., Li, D., Zhu, X., Zuo, P., et al. (2015). Whole-rock geochemistry and Sr-Nd-Pb isotope systematics of the Late Carboniferous volcanic rocks of the Awulale metallogenic belt in the western Tianshan Mountains (NW China): Petrogenesis and geodynamical implications. Lithos, 228, 62–77.

    Article  Google Scholar 

  • Gonçalves, M. A., Mateus, A., Pinto, F., & Vieira, R. (2018). Using multifractal modelling, singularity map**, and geochemical indexes for targeting buried mineralization: Application to the W-Sn Panasqueira ore-system, Portugal. Journal of Geochemical Exploration, 189, 42–53.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford University Press.

    Google Scholar 

  • Goovaerts, P. (2001). Geostatistical modelling of uncertainty in soil science. Geoderma, 103(1–2), 3–26.

    Article  Google Scholar 

  • Günther, T., Klemd, R., Zhang, X., Horn, I., & Weyer, S. (2017). In-situ trace element and Fe-isotope studies on magnetite of the volcanic-hosted Zhibo and Chagangnuoer iron ore deposits in the Western Tianshan, NW China. Chemical Geology, 453, 111–127.

    Article  Google Scholar 

  • Huang, J. H., Liu, W. C., Zeng, G. M., Li, F., Huang, X. L., Gu, Y. L., & Wan, J. (2016). An exploration of spatial human health risk assessment of soil toxic metals under different land uses using sequential indicator simulation. Ecotoxicology and Environmental Safety, 129, 199–209.

    Article  Google Scholar 

  • Juang, K., Chen, Y., & Lee, D. (2004). Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution, 127(2), 229–238.

    Article  Google Scholar 

  • Lark, R. M., Patton, M., Ander, E. L., & Reay, D. M. (2018). The singularity index for soil geochemical variables, and a mixture model for its interpretation. Geoderma, 323, 83–106.

    Article  Google Scholar 

  • Li, N., Niu, H., Zhang, X., Zeng, Q., Shan, Q., Li, C., et al. (2015). Age, petrogenesis and tectonic significance of the ferrobasalts in the Chagangnuoer iron deposit, western Tianshan. International Geology Review, 57, 1218–1238.

    Article  Google Scholar 

  • Liu, Y., Cheng, Q., Carranza, E. J. M., & Zhou, K. (2019a). Assessment of geochemical anomaly uncertainty through geostatistical simulation and singularity analysis. Natural Resources Research, 28(1), 199–212.

    Article  Google Scholar 

  • Liu, Y., Cheng, Q., **a, Q., & Wang, X. (2013). Application of singularity analysis for mineral potential identification using geochemical data—A case study: Nanling W-Sn-Mo polymetallic metallogenic belt, South China. Journal of Geochemical Exploration, 134, 61–72.

    Article  Google Scholar 

  • Liu, Y., Cheng, Q., & Zhou, K. (2019c). New insights into element distribution patterns in geochemistry: A perspective from fractal density. Natural Resources Research, 28(1), 5–29.

    Article  Google Scholar 

  • Liu, Y., Cheng, Q., Zhou, K., **a, Q., & Wang, X. (2016). Multivariate analysis for geochemical process identification using stream sediment geochemical data: A perspective from compositional data. Geochemical Journal, 50(4), 293–314.

    Article  Google Scholar 

  • Liu, Y., **a, Q., & Carranza, E. J. M. (2019b). Integrating sequential indicator simulation and singularity analysis to analyze uncertainty of geochemical anomaly for exploration targeting of tungsten polymetallic mineralization, Nanling belt, South China. Journal of Geochemical Exploration, 197, 143–158.

    Article  Google Scholar 

  • Liu, Y., **a, Q., & Cheng, Q. (2021). Aeromagnetic and geochemical signatures in the Chinese Western Tianshan: Implications for tectonic setting and mineral exploration. Natural Resources Research, 30(5), 3165–3195.

  • Liu, Y., & Zhou, K. (2018). Gold anomaly identification and its uncertainty analysis in the West Junggar belt. **njiang. Earth Science, 43(9), 3186–3199. (in Chinese with English abstract).

    Google Scholar 

  • Liu, Y., Zhou, K., & Cheng, Q. (2017). A new method for geochemical anomaly separation based on the distribution patterns of singularity indices. Computers & Geosciences, 105, 139–147.

    Article  Google Scholar 

  • Long, L., Gao, J., Qian, Q., **ong, X., Wang, J., Wang, Y., et al. (2008). Geochemical characteristics and tectonic settings of Carboniferous volcanic rocks from Yili region, western Tianshan. Acta Petrologica Sinica, 24(4), 699–710. (in Chinese with English abstract).

    Google Scholar 

  • Luo, D., & Zeng, G. (2018). Application and effects of singularity analysis in evaluating the denudation degree of Carlin-type gold deposits in southwest Guizhou, China. Ore Geology Reviews, 96, 164–180.

    Article  Google Scholar 

  • Madani, N., & Sadeghi, B. (2019). Capturing hidden geochemical anomalies in scarce data by fractal analysis and stochastic modeling. Natural Resources Research, 28(3), 833–847.

    Article  Google Scholar 

  • Martín-Sotoca, J. J., Saa-Requejo, A., Grau, J. B., & Tarquis, A. M. (2017). New segmentation method based on fractal properties using singularity maps. Geoderma, 287, 40–53.

    Article  Google Scholar 

  • Mondah, O. R., Cheng, Q., Yang, J., & Koua, K. A. D. (2021). Porphyry molybdenum prospectivity in the Zhongdian Arc, SW China: Use of singularity and factor analyses for resource assessment. Natural Resources Research, 30(6), 3881–3903.

  • Ni, S. J. (2008). Principles and Applications of geochemistry (p. 255). Bei**g: Geological Publishing House. (in Chinese).

    Google Scholar 

  • Rahimi, H., Asghari, O., & Hajizadeh, F. (2018). Selection of optimal thresholds for estimation and simulation based on indicator values of highly skewed distributions of ore data. Natural Resources Research, 27(4), 437–453.

    Article  Google Scholar 

  • Ramezanali, A. K., Feizi, F., Jafarirad, A., & Lotfi, M. (2020). Geochemical anomaly and mineral prospectivity map** for vein-type copper mineralization, Kuhsiah-e-Urmak area, Iran: Application of sequential Gaussian simulation and multivariate regression analysis. Natural Resources Research, 29(1), 41–70.

    Article  Google Scholar 

  • Remy, N., Boucher, A., & Wu, J. (2009). Applied geostatistics with SGeMS: A user’s guide. Cambridge University Press.

    Book  Google Scholar 

  • Sadeghi, B., Madani, N., & Carranza, E. J. M. (2015). Combination of geostatistical simulation and fractal modeling for mineral resource classification. Journal of Geochemical Exploration, 149, 59–73.

    Article  Google Scholar 

  • Sohrabian, B., Gharehgheshlagh, H. H., Soltani-Mohammadi, S., & Sharif, J. A. (2020). Evaluation of tailings from a porphyry copper mine based on joint simulation of contaminants. Natural Resources Research, 29(2), 983–1005.

    Article  Google Scholar 

  • Wang, J., & Zuo, R. (2021). Spatial modelling of hydrothermal mineralization-related geochemical patterns using INLA+ SPDE and local singularity analysis. Computers & Geosciences, 104822.

  • Wang, B. Y., Hu, X. J., Wang, J. T., Shao, Q. H., Ling, J. L., Guo, N. X., et al. (2011). Geological characteristics and genesis of Chagangnuoer iron deposit in western Tianshan, **njiang. Mineral Deposits, 30, 385–402. (in Chinese with English abstract).

    Google Scholar 

  • Wang, B. Y., **g, D. L., Jiang, C. Y., Zhang, B., Wang, Z. X., & Shi, F. P. (2017a). Geological background and metallogenetic mechanism of the eastern Awulale volcanic-hosted iron metallogenic belt in the western Tianshan. Acta Petrologica Sinica, 33(02), 385–397. (in Chinese with English abstract).

    Google Scholar 

  • Wang, J., & Zuo, R. (2018). Identification of geochemical anomalies through combined sequential Gaussian simulation and grid-based local singularity analysis. Computers & Geosciences, 118, 52–64.

    Article  Google Scholar 

  • Wang, J., & Zuo, R. (2019). Recognizing geochemical anomalies via stochastic simulation-based local singularity analysis. Journal of Geochemical Exploration, 198, 29–40.

    Article  Google Scholar 

  • Wang, W., Cheng, Q., Zhang, S., & Zhao, J. (2018). Anisotropic singularity: A novel way to characterize controlling effects of geological processes on mineralization. Journal of Geochemical Exploration, 189, 32–41.

    Article  Google Scholar 

  • Wang, X. S., Gao, J., Klemd, R., Jiang, T., Li, J. L., Zhang, X., et al. (2017b). The Central Tianshan Block: A microcontinent with a Neoarchean-Paleoproterozoic basement in the southwestern Central Asian Orogenic Belt. Precambrian Research, 295, 130–150.

    Article  Google Scholar 

  • Wang, X., Zhang, Q., & Zhou, G. (2007). National-scale geochemical map** projects in China. Geostandards and Geoanalytical Research, 31, 311–320.

    Article  Google Scholar 

  • Wang, Y. X., & Tian, P. R. (2003). Zoning and exploration significance of marine volcanic hotwater sedimentary deposits in **njiang. Geology and Prospecting, 39(4), 6–11. (in Chinese with English abstract).

    Google Scholar 

  • Wu, N. Y., Qi, S. J., Wang, S. Q., Li, L., & Lei, T. (2015). Definition of iron ore metallogenic epoch and ore-bearing stratum in eastern section of Awulale, West Tianshan in **njiang. **njiang Geology, 33(2), 206–211. (in Chinese with English abstract).

    Google Scholar 

  • **a, L., Xu, X., Li, X., Ma, Z., & **a, Z. (2012). Reassessment of petrogenesis of carboniferous-early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas. Geoscience Frontiers, 3(4), 445–471.

    Article  Google Scholar 

  • ** and its application for geochemical anomaly identification. Computers & Geosciences, 90, 189–201.

    Article  Google Scholar 

  • ** in China. Journal of Geochemical Exploration, 60, 99–113.

    Article  Google Scholar 

  • Xu, S., Hu, X., Carranza, E. J. M., & Wang, G. (2020). Multi-parameter analysis of local singularity map** and its application to identify geochemical anomalies in the **shan Gold deposit, North China. Natural Resources Research, 29(6), 3425–3442.

    Article  Google Scholar 

  • Yan, S., Shan, Q., Niu, H., Yang, W., Li, N., Zeng, L., et al. (2015). Petrology and geochemistry of late Carboniferous hornblende gabbro from the Awulale Mountains, western Tianshan (NW China): Implication for an arc–nascent back-arc environment. Journal of Asian Earth Sciences, 113, 218–237.

    Article  Google Scholar 

  • Yan, X. L., Zhang, H. L., & Liu, H. T. (2014). Genetic relationship and time-space distribution of varying metallogenic types among Carboniferous iron deposits in the Yili terrane. **njiang Geology, 32(2), 180–186. (in Chinese with English abstract).

    Google Scholar 

  • Yang, Y., & Christakos, G. (2015). Uncertainty assessment of heavy metal soil contamination map** using spatiotemporal sequential indicator simulation with multi-temporal sampling points. Environmental Monitoring and Assessment, 187(9), 1–15.

    Article  Google Scholar 

  • Yuan, T. (2003). Contrast of geological characteristics between Motuoshala iron (manganese) deposit and Shikebutai iron deposit in West Tianshan mountain of **njiang Autonomous region. Contributions to Geology and Mineral Resources Research, 18, 88–92. (in Chinese with English abstract).

    Google Scholar 

  • Zhang, D., Cheng, Q., Agterberg, F., & Chen, Z. (2016). An improved solution of local window parameters setting for local singularity analysis based on Excel VBA batch processing technology. Computers & Geosciences, 88, 54–66.

    Article  Google Scholar 

  • Zhang, G. W., Li, S. Z., Liu, J. X., Teng, Z. H., **, H. L., Li, W., et al. (1999). Structural feature and evolution of Yili Basin. **njiang. Earth Science Frontiers, 6(4), 203–214. (in Chinese with English abstract).

    Google Scholar 

  • Zhang, X., Dong, Z. G., Zhang, B. L., Peng, Z. D., Zhang, L. C., et al. (2020). Geologcal feature and genesis of Shikebutai iron deposit in Western Tianshan, **njiang. **njiang Geology, 23, 497–593. (in Chinese with English abstract).

    Google Scholar 

  • Zhang, X., Tian, J. Q., Gao, J., Klemd, R., Dong, L. H., Fan, J. J., et al. (2012). Geochronology and geochemistry of granitoid rocks from the Zhibo syngenetic volcanogenic iron ore deposit in the western Tianshan Mountains (NW-China), constraints on the age of mineralization and tectonic setting. Gondwana Research, 22, 585–596.

    Article  Google Scholar 

  • Zhang, Z., Hong, W., Jiang, Z., Duan, S., Li, F., & Shi, F. (2014). Geological characteristics and metallogenesis of iron deposits in western Tianshan, China. Ore Geology Reviews, 57, 425–440.

    Article  Google Scholar 

  • Zhu, H., & Journel, A. G. (1993). Formatting and interpreting soft data: Stochastic imaging via the Markov-Bayes algorithm. In A. Soares (Ed.), Geostatistics-Troia (Vol. 1, pp. 1–12). Kluwer Academic Publishers.

    Google Scholar 

  • Zuo, R., Cheng, Q., Agterberg, F. P., & ** technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration, 101(3), 225–235.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (42172325) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUG2106202). We thank three anonymous reviewers for their helpful comments that improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Carranza, E.J.M. Uncertainty Analysis of Geochemical Anomaly by Combining Sequential Indicator Co-simulation and Local Singularity Analysis. Nat Resour Res 31, 1889–1908 (2022). https://doi.org/10.1007/s11053-021-10001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-10001-y

Keywords

Navigation