Log in

Size-controlled synthesis of gold nanoparticles and related molecular imaging contrast for computed tomography

  • Original research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The discovery and development of novel contrast agents for CT imaging could address the current limitations of this non-invasive testing technique, thus improving diagnostic efficiency. Although this approach is significant to clinical research, finding a highly potent and biocompatible contrast agent is challenging. In our study, the homogeneous and monodisperse Au nanospheres were successfully synthesized using chemical reduction. The influence of surfactants, oleylamine (OLA) and sodium oleate (SOA); solvent; and reaction time on the materials’ formation, size, and properties was examined to find the optimal conditions. Investigation showed that using OLA and SOA as surfactants resulted in materials with similar morphology and uniformity. The solvent 1-octadecene (ODE) and reaction time in the 30–60-min range facilitated the formation of uniform and monodisperse gold nanoparticles (GNPs). Characterization indicated that the fabricated Au materials were crystalline and spherical with a face-centered cubic (fcc) structure and an average size of 8.4–20.7 nm. Their maximum surface plasmon resonance (SPR) absorbance varied in the range of 516–531 nm. After surface modification by the poly(maleic anhydride-alt-1-octadecene) (PMAO), the Au NPs were highly stable in a aqueous solution with a zeta potential ranging from − 45.6 to − 42 mV, dynamic light scattering (DLS) size of 17.7 and 26.8 corresponding to the sample size of 8.4 nm and 15.5 nm, respectively. In vitro CT imaging results show that the material Au@PMAO enhanced the CT image contrast signals. Particularly, the smaller GNPs exhibited higher X-ray attenuation than the large ones. At the same investigated concentration, the image contrast performance of the Au@PMAO NPs outweighed that of the commercial product Xenetix, which contained iodine. These outstanding properties prove that the Au@PMAO material is a promising alternative for CT imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on suitable request.

References

  1. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668. https://doi.org/10.1021/nl052396o

    Article  CAS  PubMed  Google Scholar 

  2. Kircher MF, Willmann JK (2012) Molecular body imaging: MR imaging, CT, and US. Part I Principles Radiology 263:633–643. https://doi.org/10.1148/radiol.12102394

    Article  PubMed  Google Scholar 

  3. Pelc NJ (2014) Recent and future directions in CT imaging. Ann Biomed Eng 42:260–268. https://doi.org/10.1007/s10439-014-0974-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R (2011) Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine 6:2859–2864. https://doi.org/10.2147/ijn.s25446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lusic H, Grinstaff MW (2013) X-ray-computed tomography contrast agents. Chem Rev 113:1641–1666. https://doi.org/10.1021/cr200358s

    Article  CAS  PubMed  Google Scholar 

  6. Bernstein AL, Dhanantwari A, Jurcova M, Cheheltani R, Naha PC, Ivanc T, Shefer E, Cormode DP (2016) Improved sensitivity of computed tomography towards iodine and gold nanoparticle contrast agents via iterative reconstruction methods. Sci Rep 6:1–9. https://doi.org/10.1038/srep26177

    Article  CAS  Google Scholar 

  7. Cormode DP, Naha PC, Fayad ZA (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 9:37–52. https://doi.org/10.1002/cmmi.1551

    Article  CAS  PubMed  Google Scholar 

  8. Ashton JR, West JL, Badea CT (2015) In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol 6:1–22. https://doi.org/10.3389/fphar.2015.00256

    Article  CAS  Google Scholar 

  9. Ghann WE, Aras O, Fleiter T, Daniel MC (2012) Syntheses and characterization of lisinopril-coated gold nanoparticles as highly stable targeted CT contrast agents in cardiovascular diseases. Langmuir 28:10398–10408. https://doi.org/10.1021/la301694q

    Article  CAS  PubMed  Google Scholar 

  10. Boote E, Fent G, Kattumuri V, Casteel S, Katti K, Chanda N, Kannan R, Katti K, Churchill R (2010) Gold nanoparticle contrast in a phantom and juvenile swine. Acad Radiol 17:410–417. https://doi.org/10.1016/j.acra.2010.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shilo M, Reuveni T, Motiei M, Popovtzer R (2012) Nanoparticles as computed tomography contrast agents: current status and future perspectives”. Nanomedicine 7:257–269. https://doi.org/10.2217/nnm.11.190

    Article  CAS  PubMed  Google Scholar 

  12. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology. Catalysis, and Nanotechnology. Chem Rev 104:293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  PubMed  Google Scholar 

  13. Naha PC, Chhour P, Cormode DP (2015) Systematic in vitro toxicological screening of gold nanoparticles designed for nanomedicine applications. Toxicol Vitr 29:1445–1453. https://doi.org/10.1016/j.tiv.2015.05.022

    Article  CAS  Google Scholar 

  14. Dung NT, Linh NTN, Chi DL, Hoa NTH, Hung NP, Ha NT, Nam PH, Phuc NX, Tam LT, Le TLu (2021) Optical properties and stability of small hollow gold nanoparticles. RSC Adv 11:13458–13465. https://doi.org/10.1039/d0ra09417j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rabin O, Perez JM, Grimm J, Wojtkiewicz G, Weissleder R (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122. https://doi.org/10.1038/nmat1571

    Article  CAS  PubMed  Google Scholar 

  16. Yu SB, Watson AD (1999) Metal-based X-ray contrast media. Chem Rev 99:2353–2377. https://doi.org/10.1021/cr980441p

    Article  CAS  PubMed  Google Scholar 

  17. Pannu HK, Thompson RE, Phelps J, Magee CA, Fishman EK (2005) Optimal contrast agents for vascular imaging on computed tomography: iodixanol versus iohexol. Acad Radiol 12:576–584. https://doi.org/10.1016/j.acra.2005.01.015

    Article  PubMed  Google Scholar 

  18. Voert CEM, Kour RYN, Teeffelen BCJ, Ansari N, Stok KS (2020) Contrast-enhanced micro-computed tomography of articular cartilage morphology with ioversol and iomeprol. J Anat 237:1062–1071. https://doi.org/10.1111/joa.13271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oliva MR, Erturk SM, Ichikawa T, Rocha T, Ros PR, Silverman SG, Mortele KJ (2012) Gastrointestinal tract wall visualization and distention during abdominal and pelvic multidetector ct with a neutral barium sulphate suspension: comparison with positive barium sulphate suspension and with water. JBR–BTR. 95, 237–242. https://doi.org/10.5334/jbr-btr.628

  20. Cormode DP, Jarzyna PA, Mulder WJM, Fayad ZA (2012) Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev 62:329–338. https://doi.org/10.1016/j.addr.2009.11.005

    Article  CAS  Google Scholar 

  21. Hsu JC, Nieves LM, Betzer O, Sadan T, Noël PB, Popovtzer R, Cormode DP (2021) Nanoparticle contrast agents for X-ray imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12(6):e1642. https://doi.org/10.1002/wnan.1642.Nanoparticle

    Article  Google Scholar 

  22. Cochran ST (2005) Anaphylactoid reactions to radiocontrast media Curr. Allergy Asthma Rep 5:28–31. https://doi.org/10.1007/s11882-005-0051-7

    Article  CAS  Google Scholar 

  23. Mruk B (2016) Renal safety of iodinated contrast media depending on their osmolarity - current outlooks. Polish J Radiol 81:157–165. https://doi.org/10.12659/PJR.895406

    Article  Google Scholar 

  24. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253. https://doi.org/10.1259/bjr/13169882

    Article  CAS  PubMed  Google Scholar 

  25. Cormode DP, Cormode DP, Skajaa T, Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, Calcagno C, Barazza A, Gordon RE, Zanzonico P, Fisher EA, Fayad ZA, Mulder WJM (2008) Nanocrystal core high-density lipoproteins- a multimodality contrast agent platform. Nano. Lett. 8:3715–3723. https://doi.org/10.1021/nl801958b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33:1107–1119. https://doi.org/10.1016/j.biomaterials.2011.10.052

    Article  CAS  PubMed  Google Scholar 

  27. Jackson PA, Rahman WNWA, Wong CJ, Ackerly T, Geso M (2010) Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur J Radiol 75:104–109. https://doi.org/10.1016/j.ejrad.2009.03.057

    Article  PubMed  Google Scholar 

  28. Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672. https://doi.org/10.1039/c2cs15261d

    Article  CAS  PubMed  Google Scholar 

  29. Cai QY, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, Park SH, Juhng SK, Yoon KH (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for x-ray computed tomography in mice. Invest Radiol 42:797–806. https://doi.org/10.1097/RLI.0b013e31811ecdcd

    Article  CAS  PubMed  Google Scholar 

  30. Moghimi SM, Hunter AC, Murray JC (2014) Long-circulating and target-specific nanoparticles : theory to practice. Pharmacol Rev. 2001, 53, 283–318. https://www.researchgate.net/publication/11980988_Long-Circulating_and_Target-Specific_Nanoparticles_Theory_to_Practice

  31. Eck W, Nicholson AI, Zentgraf H, Semmler W, Bartling S (2010) Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice. Nano Lett 10:2318–2322. https://doi.org/10.1021/nl101019s

    Article  CAS  PubMed  Google Scholar 

  32. Chenjie X, Tung GA, Shouheng S (2008) Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem Mater 20:4167–4169. https://doi.org/10.1021/cm8008418

    Article  CAS  Google Scholar 

  33. Fang Y, Peng C, Guo R, Zheng L, Qin J, Zhou B, Shen M, Lu X, Zhang G, Shi X (2013) Dendrimer-stabilized bismuth sulfide nanoparticles: synthesis, characterization, and potential computed tomography imaging applications. Analyst 138:3172–3180. https://doi.org/10.1039/c3an00237c

    Article  CAS  PubMed  Google Scholar 

  34. **ao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK (2016) MRI contrast agents: classification and application (Review). Int J Mol Med 38:1319–1326. https://doi.org/10.3892/ijmm.2016.2744

    Article  CAS  PubMed  Google Scholar 

  35. Thomsen HS (2006) Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide. Eur Radiol 16:2619–2621. https://doi.org/10.1007/s00330-006-0495-8

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hajfathalian M, Amirshaghaghi A, Naha PC, Chhour P, Hsu JC, Douglas K, Dong Y, Sehgal CM, Tsourkas A, Neretina S, Cormode DP (2018) Wulff in a cage gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Nanoscale 10:18749–18757. https://doi.org/10.1039/c8nr05203d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK (2015) Gold nanoparticles as contrast agents in X-ray imaging and computed tomography. Nanomedicine 10:321–341. https://doi.org/10.2217/nnm.14.171

    Article  CAS  PubMed  Google Scholar 

  38. Oumano M, Russell L, Salehjahromi M, Shanshan L, Sinha N, Ngwa W, Yu H (2021) CT imaging of gold nanoparticles in a human-sized phantom. J Appl Clin Med Phys 22:337–342. https://doi.org/10.1002/acm2.13155

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP (2013). Mol. Pharmaceutics. 10, 831–847

  40. Kiessling F, Pichler BJ, Hauff P (2017) Small animal imaging. Springer Cham. https://doi.org/10.1007/978-3-319-42202-2

    Article  Google Scholar 

  41. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79:4215–4221. https://doi.org/10.1021/ac0702084

    Article  CAS  PubMed  Google Scholar 

  42. Dong YC, Hajfathalian M, Maidment PSN, Hsu JC, Naha PC, Si-Mohamed S, Breuilly M, Kim J, Chhour P, Douek P, Litt HI, Cormode DP (2019) Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci. Rep. 9:14912. https://doi.org/10.1038/s41598-019-50332-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chhour P, Kim J, Benardo B, Tovar A, Mian S, Litt HI, Ferrari VA, Cormode DP (2017) Effect of gold nanoparticle size and coating on labeling monocytes for CT tracking. Bioconjugate Chem 28:260–269. https://doi.org/10.1021/acs.bioconjchem.6b00566

    Article  CAS  Google Scholar 

  44. Khademi S, Sarkara S, Kharrazid S, Aminie SM, Zadehf AS, Ay MR, Ghadiri H (2017) Evaluation of size, morphology, concentration, and surface effect of gold nanoparticles on X-ray attenuation in computed tomography. Phys Medica 45:127–133. https://doi.org/10.1016/j.ejmp.2017.12.001

    Article  Google Scholar 

  45. Y Dou Y Guo X Li X Li S Wang L Wang G Lv X Zhang H Wang X Gong and, 2016 J Chang Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy ACS Nano 10 2536 2548 https://doi.org/10.1021/acsnano.5b07473

  46. Ross RD, Cole LE, Tilley JMR, Roeder RK (2014) Effects of functionalized gold nanoparticle size on X-ray attenuation and substrate binding affinity. Chem Mater 26:1187–1194. https://doi.org/10.1021/cm4035616

    Article  CAS  Google Scholar 

  47. Hirn S, Behnke MS, Schleh C, Wenk A, Lipka J, Schäffler M, Takenaka S, Möller W, Schmid G, Simon U, Kreyling WG (2011) Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77:407–416. https://doi.org/10.1016/j.ejpb.2010.12.029

    Article  CAS  PubMed  Google Scholar 

  48. Takeuchi I, Nobata S, Oiri N, Tomoda K, Makino K (2017) Biodistribution and excretion of colloidal gold nanoparticles after intravenous injection: effects of particle size. Biomed Mater Eng 28:315–323. https://doi.org/10.3233/BME-171677

    Article  CAS  PubMed  Google Scholar 

  49. Fratoddi I, Venditti I, Cametti C, Russo MV (2017) Gold nanoparticles and gold nanoparticle-conjugates for delivery of therapeutic molecules. Progress and challenges. J Mater Chem B 2:4204–4220. https://doi.org/10.1039/c4tb00383g

    Article  CAS  Google Scholar 

  50. Lu LT, Dung NT, Tung LD, Thanh CT, Quy OK, Chuc NV, Maenosono S, Thanh NTK (2015) Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale 7:19596–19610. https://doi.org/10.1039/c5nr04266f

    Article  CAS  PubMed  Google Scholar 

  51. Yamashita Y, Miyahara R, Sakamoto K (2017) Emulsion and emulsification technology. Elsevier Inc. Chapter 28, 489–506. https://doi.org/10.1016/B978-0-12-802005-0.00028-8

  52. Fodjo EK, Canlier A, Kong C, Yurtsever A, Guillaume PL, Patrice FT, Abe M, Tohei T, Sakai A (2018) Facile synthesis route of Au-Ag nanostructures soaked in PEG. Adv Nanoparticles 7:37–45. https://doi.org/10.4236/anp.2018.72004

    Article  CAS  Google Scholar 

  53. Novak JP, Feldheim DL (2000) Assembly of phenylacetylene-bridged silver and gold nanoparticle arrays. JACS 122:3979–3980. https://doi.org/10.1021/ja000477a

    Article  CAS  Google Scholar 

  54. Kalyan Kamal SS, Vimala J, Sahoo PK, Ghosal P, Ram S, Durai L (2014) A green chemical approach for synthesis of shape anisotropic gold nanoparticles. Int Nano Lett 4:109–115. https://doi.org/10.1007/s40089-014-0109-4

    Article  CAS  Google Scholar 

  55. Ha Pham TT, Dien ND, Vu XH (2021) Facile synthesis of silver/gold alloy nanoparticles for ultra-sensitive rhodamine B detection. RSC Adv 11:21475–21488. https://doi.org/10.1039/d1ra02576g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Losso JN, Khachatryan A, Ogawa M, Godber JS, Shih F (2005) Random centroid optimization of phosphatidylglycerol stabilized lutein-enriched oil-in-water emulsions at acidic pH. Food Chem 92:737–744. https://doi.org/10.1016/j.foodchem.2004.12.029

    Article  CAS  Google Scholar 

  57. Zhao HY, Liu S, He J, Pan CC, Li H, Zhou ZY, Ding Y, Huo D, Hu Y (2015) Synthesis and application of strawberry-like Fe3O4-Au nanoparticles as CT-MR dual-modality contrast agents in accurate detection of the progressive liver disease. Biomaterials 51:194–207. https://doi.org/10.1016/j.biomaterials.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  58. Chen Q, Li K, Wen S, Liu H, Peng C, Cai H, Shen M, Zhang G, Shi X (2013) Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 34:5200–5209. https://doi.org/10.1016/j.biomaterials.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  59. Liu H, Li K, Wen S, Liu H, Peng C, Cai H, Shen M, Zhang G, Shi X (2013) Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles. Chem - A Eur J 19:6409–6416. https://doi.org/10.1002/chem.201204612

    Article  CAS  Google Scholar 

  60. Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Facile one-pot synthesis of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging applications. ACS Appl Mater Interfaces 5:10357–10366. https://doi.org/10.1021/am4034526

    Article  CAS  PubMed  Google Scholar 

  61. **ao T, Wen S, Wang H, Liu H, Shen M, Zhao J, Zhang G, Shi X (2013) Facile synthesis of acetylated dendrimer-entrapped gold nanoparticles with enhanced gold loading for CT imaging applications. J Mater Chem B 1:2773–2780. https://doi.org/10.1039/c3tb20399a

    Article  CAS  PubMed  Google Scholar 

  62. Ajeesh M, Francis BF, Annie J, Varma PRH (2010) Nano iron oxide-hydroxyapatite composite ceramics with enhanced radiopacity. J Mater Sci Mater Med 21:1427–1434. https://doi.org/10.1007/s10856-010-4005-9

    Article  CAS  PubMed  Google Scholar 

  63. Rotello V (2004) Nanoparticles building blocks for nanotechnology nanostructure science and technology. Nanostructure Sci. Technol. https://doi.org/10.1007/978-1-4419-9042-6

Download references

Acknowledgements

L. T. Tam is thankful to Vinh University. N. T. N. Linh is grateful to Thai Nguyen University of Sciences, Thai Nguyen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tam The Le.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L.T.N., Van Vu, H. & Le, T.T. Size-controlled synthesis of gold nanoparticles and related molecular imaging contrast for computed tomography. J Nanopart Res 26, 113 (2024). https://doi.org/10.1007/s11051-024-06024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-06024-0

Keywords

Navigation