Log in

Self-assembled multi-structured reduced graphene oxide/zinc composite

  • Original research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Graphene-based materials have presented significant attention owing to their intriguing properties and the potential for the production of diverse composite formulations. Among these avenues, the incorporation of dopamine as an anchoring agent stands out, fostering the emergence of multiple phases at the graphene surface. In this study, we propose a straightforward methodology for the fabrication of reduced graphene oxide/zinc composites, leveraging dopamine molecules as intermediaries, facilitated by UV-C irradiation. The outcomes vividly underscore the adeptness of dopamine in mediating the attachment of zinc hydroxide and zinc hydroxide nitrate hydrate onto the core-reduced graphene oxide (RGO). These interactions engender the retention of RGO’s structural–functional groups, a reduction in interplanar spacing, and the establishment of a mesoporous framework characterized by pore diameters surpassing 200 Å. Collectively, the results firmly establish the successful synthesis of RGO/Zn composites, positioning them as promising candidates for diverse applications by capitalizing on the inherent attributes of graphene-based materials and the laminar architecture of zinc hydroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Compton OC, Nguyen ST (2010) Small 6:711

    Article  CAS  PubMed  Google Scholar 

  2. Toh SY, Loh KS, Kamarudin SK, Daud WRW (2014) Chem Eng J 251:422

    Article  CAS  Google Scholar 

  3. Alemi F, Zarezadeh R, Sadigh AR, Hamishehkar H, Rahimi M, Majidinia M et al (2020) Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. J Drug Deliv Sci Technol 60:101974

    Article  CAS  Google Scholar 

  4. Jakhar R, Yap JE, Joshi R (2020) Carbon 170:277

    Article  CAS  Google Scholar 

  5. Pei S, Cheng HM (2012) Carbon 50:3210

    Article  CAS  Google Scholar 

  6. Tang S, ** S, Zhang R, Liu Y, Wang J, Hu Z, Lu W, Yang S, Qiao W, Ling L, ** M (2019) Appl Surf Sci 473:222

    Article  CAS  Google Scholar 

  7. Tarcan R, Todor-Boer O, Petrovai I, Leordean C, Astilean S, Botiz I (2020) J Mater Chem C Mater 8:1198

    Article  CAS  Google Scholar 

  8. Yu W, Sisi L, Haiyan Y, Jie L (2020) RSC Adv 10:15328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Palanisamy S, Thirumalraj B, Chen SM, Wang YT, Velusamy V, Ramaraj SK (2016) A facile electrochemical preparation of reduced graphene oxide@ polydopamine composite: A novel electrochemical sensing platform for amperometric detection of chlorpromazine. Sci Rep 6(1):1–9

    Article  Google Scholar 

  10. Ji M, Jiang N, Chang J, Sun J (2014) Near-infrared light-driven, highly efficient bilayer actuators based on polydopamine-modified reduced graphene oxide. Adv Funct Mater 24(34):5412–5419

    Article  CAS  Google Scholar 

  11. Li XP, Qu KY, Zhou B, Zhang F, Wang YY, Abodunrin OD et al (2021) Electrical stimulation of neonatal rat cardiomyocytes using conductive polydopamine-reduced graphene oxide-hybrid hydrogels for constructing cardiac microtissues. Colloids Surf B Biointerfaces 205:111844

    Article  CAS  PubMed  Google Scholar 

  12. Yu C, de Luna MS, Marotta A, Ponti C, Esposito I, Scherillo F et al (2021) NIR light-triggered selfhealing waterborne polyurethane coatings with polydopamine-coated reduced graphene oxide nanoparticles. Prog Org Coat 161:106499

    Article  CAS  Google Scholar 

  13. Yu C, de Luna MS, Marotta A, Ponti C, Esposito I, Scherillo F et al (2021) NIR light-triggered selfhealing waterborne polyurethane coatings with polydopamine-coated reduced graphene oxide nanoparticles. Progress in Organic Coatings 161:106499

    Article  CAS  Google Scholar 

  14. Wang Z, Zou Y, Li Y, Cheng Y (2020) Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics. Small 16(18):1907042

    Article  CAS  Google Scholar 

  15. Yazdi MK, Zare M, Khodadadi A, Seidi F, Sajadi SM, Zarrintaj P, Arefi A, Saeb MR, Mozafari M (2022) ACS Biomater Sci Eng 8:2196

    Article  CAS  PubMed  Google Scholar 

  16. Lee HA, Ma Y, Zhou F, Hong S, Lee H (2019) Acc Chem Res 52:704

    Article  CAS  PubMed  Google Scholar 

  17. Hu J, Yang L, Yang P, Jiang S, Liu X, Li Y (2020) Biomater Sci 8:4940

    Article  CAS  PubMed  Google Scholar 

  18. Liebscher J (2019) European J Org Chem 2019:4976

    Article  CAS  Google Scholar 

  19. Gupta S, Chang C, Anbalagan AK, Lee CH, Tai NH (2020) Reduced graphene oxide/zinc oxide coated wearable electrically conductive cotton textile for high microwave absorption. Compos Sci Technol 188:107994

    Article  CAS  Google Scholar 

  20. Meti S, Rahman MR, Ahmad MI, Bhat KU (2018) Appl Surf Sci 451:67

    Article  CAS  Google Scholar 

  21. Shu R, Xu J, Nie L, Shi J (2022) Facile construction of three-dimensional porous netlike reduced graphene oxide/zinc oxide composite aerogels as the lightweight, flame retardant, compression resilience and high-performance electromagnetic wave absorbers. Compos A Appl Sci Manuf 160:107068

    Article  CAS  Google Scholar 

  22. Shu R, Xu J, Wan Z, Cao X (2022) J Colloid Interface Sci 608:2994

    Article  CAS  PubMed  Google Scholar 

  23. Ahmed MA, Ahmed MA, Mohamed AA (2022) Facile adsorptive removal of dyes and heavy metals from wastewaters using magnetic nanocomposite of zinc ferrite@ reduced graphene oxide. Inorg Chem Commun 144:109912

    Article  CAS  Google Scholar 

  24. Shu R, Zhang G, Zhang J, Wang X, Wang M, Gan Y, Shi J, He J (2018) Mater Lett 215:229

    Article  CAS  Google Scholar 

  25. Yan L, Zhou M, Pang X, Gao K (2019) Langmuir 35:6312

    Article  CAS  PubMed  Google Scholar 

  26. Nabipour H, Hu Y (2022) J Porous Mater 29:341

    Article  CAS  Google Scholar 

  27. de Faria JM, Muniz LA, Netto JFZ, Firak DS, De Sousa FB, da Silva Lisboa F (2021) Application of a hybrid material formed by layered zinc hydroxide chloride modified with spiropyran in the adsorption of Ca2+ from water. Colloids Surf A: Physicochem Eng Asp 631:127738

    Article  Google Scholar 

  28. Du Y, Li G, Ye L, Che C, Yang X, Zhao L (2021) Sandwich-like Ni-Zn hydroxide nanosheets vertically aligned on reduced graphene oxide via MOF templates towards boosting supercapacitive performance. Chem Eng J 417:129189

  29. Gordeeva A, Hsu YJ, Jenei IZ, Brant Carvalho PHB, Simak SI, Andersson O, Haüssermann U (2020) ACS Omega 5:17617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ameena Shirin VK, Sankar R, Johnson AP, Gangadharappa HV, Pramod K (2021) J Control Release 330:398

    Article  CAS  PubMed  Google Scholar 

  31. Praxedes FM, Moreno H, Simões AZ, Teixeira VC, Nunes RS, Amoresi RAC, Ramirez MA (2022) Interface matters: Design of an efficient CaCu3Ti4O12-rGO photocatalyst. Powder Technol 404:117478

    Article  CAS  Google Scholar 

  32. Sharma N, Vyas R, Sharma V, Rahman H, Sharma SK, Sachdev K (2020) Appl Nanosci (Switzerland) 10:517

    Article  CAS  Google Scholar 

  33. Verma S, Dutta RK (2015) RSC Adv 5:77192

    Article  CAS  Google Scholar 

  34. Ghadim EE, Manouchehri F, Soleimani G, Hosseini H, Kimiagar S, Nafisi S (2013) Adsorption properties of tetracycline onto graphene oxide: equilibrium, kinetic and thermodynamic studies. PLoS One 8(11):e79254

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gong Y, Li D, Fu Q, Pan C (2015) Prog Nat Sci: Mater Int 25:379

    Article  CAS  Google Scholar 

  36. de Silva KKH, Huang HH, Joshi RK, Yoshimura M (2017) Carbon N Y 119:190

    Article  Google Scholar 

  37. Sui Z, Zhang X, Lei Y, Luo Y (2011) Carbon N Y 49:4314

    Article  CAS  Google Scholar 

  38. Li J, Li J, Li L, Yu M, Ma H, Zhang B (2014) J Mater Chem A Mater 2:6359

    Article  CAS  Google Scholar 

  39. Ruiz CV, Rodríguez-Castellón E, Giraldo O (2018) Inorg Chem 57:9067

    Article  CAS  PubMed  Google Scholar 

  40. Nabipour H, Sadr MH, Thomas N (2016) New J Chem 40:238

    Article  CAS  Google Scholar 

  41. Flouda P, Shah SA, Lagoudas DC, Green MJ, Lutkenhaus JL (2019) Matter 1:1532

    Article  Google Scholar 

  42. Xu LQ, Yang WJ, Neoh KG, Kang ET, Fu GD (2010) Macromolecules 43:8336

    Article  CAS  Google Scholar 

  43. Lee W, Lee JU, Jung BM, Byun JH, Yi JW, Lee SB, Kim BS (2013) Carbon N Y 65:296

    Article  CAS  Google Scholar 

  44. Yang X, Niu X, Mo Z, Guo R, Liu N, Zhao P, Liu Z (2019) Electrochim Acta 319:705

    Article  CAS  Google Scholar 

  45. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9-10):1051–1069

    Article  CAS  Google Scholar 

  46. Rahman MM, Muttakin M, Pal A, Shafiullah AZ, Saha BB (2019) A statistical approach to determine optimal models for IUPAC-classified adsorption isotherms. Energies 12(23):4565

    Article  CAS  Google Scholar 

  47. Ossonon BD, Bélanger D (2017) RSC Adv 7:27224

    Article  CAS  Google Scholar 

  48. Cychosz KA, Thommes M (2018) Engineering 4:559

    Article  CAS  Google Scholar 

  49. Nasir S, Hussein MZ, Yusof NA, Zainal Z (2017) Oil palm waste-based precursors as a renewable and economical carbon sources for the preparation of reduced graphene oxide from graphene oxide. Nanomaterials 7(7):182

    Article  PubMed  PubMed Central  Google Scholar 

  50. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Carbon N Y 49:3019

    Article  CAS  Google Scholar 

  51. Duchoslav J, Steinberger R, Arndt M, Stifter D (2014) Corros Sci 82:356

    Article  CAS  Google Scholar 

  52. Trakulmututa J, Chuaicham C, Shenoy S, Srikhaow A, Sasaki K, Smith SM (2022) Effect of transformation temperature toward optical properties of derived CuO/ZnO composite from Cu–Zn hydroxide nitrate for photocatalytic ciprofloxacin degradation. Opt Mater 133:112941

    Article  CAS  Google Scholar 

  53. Almasri DA, Essehli R, Tong Y, Lawler J (2021) RSC Adv 11:30172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang J, Yi M, **n Y, Pang Y, Zou Y (2022) ACS Appl Mater Interfaces 14:48976

    Article  CAS  PubMed  Google Scholar 

  55. Singh R, Ullah S, Rao N, Singh M, Patra I, Darko DA et al (2022) Synthesis of three-dimensional reduced-graphene oxide from graphene oxide. J Nanomater 2022:1–18

  56. Safari M, Naseri M, Esmaeili E, Naderi E (2023) Green synthesis by celery seed extract and improvement of the anticancer activity of quercetin-loaded rGO/Ca1-xMnxFe2O4 nanocarriers using UV light in breast cancer cells. J Mol Struct 1281:135059

    Article  CAS  Google Scholar 

  57. Yuan X, Yu R, Du Y, Lei B (2023) Zinc oxide grown on boron nitride via polydopamine as nano-pigment to enhance the active/passive protective properties of silicone-epoxy coatings. Progress in Organic Coatings 182:107660

    Article  CAS  Google Scholar 

  58. Meng L, Liu X, Hong Q, Ji Y, Wang L, Zhang Q, Chen J, Pan C (2023) Coatings 13:1079

    Article  CAS  Google Scholar 

  59. Sharif SNM, Hashim N, Isa IM, Bakar SA, Saidin MI, Ahmad MS, Mamat M, Hussein MZ (2020) J Porous Mater 27:473

    Article  CAS  Google Scholar 

  60. Nabipour H (2019) J Inorg Organomet Polym Mater 29:1807

    Article  CAS  Google Scholar 

  61. Sardinha AF, Almeida DAL, Ferreira NG (2020) J Market Res 9:10841

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Embrapa Instrumental for BET measurements. The authors acknowledge The Instituto de Estudos Avançados do Mar (IEMAR) for allowing to use of the electrochemical equipment.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. This research was partially funded by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) by Centro de Desenvolvimento de Materias Funcionais (CDMF) Grant 2013/07296–2.

Author information

Authors and Affiliations

Authors

Contributions

Jean Valdir Uchôa Teixeira: conceptualization, investigation, formal analysis methodology, writing—original draft. Valmor Roberto Mastelaro: XPS measurements and data analysis. Paulo Noronha Lisboa Filho: conceptualization, supervision, writing—review and editing, resources.

Corresponding author

Correspondence to Paulo Noronha Lisboa-Filho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 92 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, J.V.U., Mastelaro, V.R. & Lisboa-Filho, P.N. Self-assembled multi-structured reduced graphene oxide/zinc composite. J Nanopart Res 26, 107 (2024). https://doi.org/10.1007/s11051-024-06002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-06002-6

Keywords

Navigation