Log in

The substitution effect of tantalum on the visible-light-driven water reduction activity of SrNbO2N photocatalyst

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A series of SrNb1-xTaxO2N (x=0, 0.25, 0.5, 0.75, 1) was synthesized by partially substituting Nb with Ta in order to modulate the electronic structure and photocatalytic water splitting performance of SrNbO2N. The Rietveld refinement results revealed that the cell volume of SrNb1-xTaxO2N was decreased with the increased addition tantalum amount in SrNb1-xTaxO2N. The band gap energy gradually increased with the increasing substituted Ta content. Meanwhile, XPS measurement demonstrated that the replacement of niobium with tantalum could hinder the reduction of both Nb and Ta during nitridation, which could reduce the defect density, being beneficial to improving the separation of photogenerated charge carriers. SrNb0.5Ta0.5O2N photocatalyst exhibited an optimal photocatalytic hydrogen evolution performance (814.02 μmol/g), which was 36.07 and 13.86 times than that of SrNbO2N (22.57 μmol/g) and SrTaO2N (58.73 μmol/g), respectively. This work might provide an effective strategy for tuning the photocatalytic activity of SrNbO2N by building solution solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Wan S, Xu J, Cao S, Yu J (2022) Promoting intramolecular charge transfer of graphitic carbon nitride by donor-acceptor modulation for visible-light photocatalytic H2 evolution. Interdisciplinary Mater 1:294–308. https://doi.org/10.1002/idm2.12024

    Article  Google Scholar 

  2. Chen Q, Huang J, **ao T, Cao L, Liu D, Li X, Niu M, Xu G, Kajiyoshi K, Feng L (2023) V-doped Ni2P nanoparticle grafted g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution performance under visible light. Dalton Trans 52:7447–7456. https://doi.org/10.1039/D3DT00996C

    Article  CAS  Google Scholar 

  3. Li M, Zhang D, Zhou H, Sun K, Ma X, Dong M (2023) Construction of hollow tubular Co9S8/ZnSe S-scheme heterojunctions for enhanced photocatalytic H2 evolution Int J Hydrogen. Energ 48:5126–5137. https://doi.org/10.1016/j.ijhydene.2022.11.052

    Article  CAS  Google Scholar 

  4. Ding Y, Maitra S, Wang C, Halder S, Zheng R, Barakat T, Roy S, Chen L, Su B (2022) Vacancy defect engineering in semiconductors for solar light-driven environmental remediation and sustainable energy production. Interdisciplinary Mater 1:213–255. https://doi.org/10.1002/idm2.12025

    Article  Google Scholar 

  5. Tran TTT, Trinh V, Seo J (2023) Two-dimensional perovskite SrNbO2N with Zr do** for accelerating photoelectrochemical water splitting. J Mater Sci Technol 142:176–184. https://doi.org/10.1016/j.jmst.2022.09.034

    Article  CAS  Google Scholar 

  6. Yang L, Yu J, Fu Q, Kong L, Xu X (2022) Mesoporous single-crystalline SrNbO2N: Expediting charge transportation to advance solar water splitting. Nano Energy 95:107059. https://doi.org/10.1016/j.nanoen.2022.107059

    Article  CAS  Google Scholar 

  7. Seo J, Ishizuka D, Hisatomi T, Takata T, Domen K (2021a) Effect of Mg2+ substitution on the photocatalytic water splitting activity of LaMgxNb1-xO1+3xN2-3x. J Mater Chem A 9:8655–8662. https://doi.org/10.1039/D1TA00164G

    Article  CAS  Google Scholar 

  8. Hojamberdiev M et al (2022) Unfolding the role of B site-selective do** of aliovalent cations on enhancing sacrificial visible light-induced photocatalytic H2 and O2 evolution over BaTaO2N. ACS Catal 12:1403–1414. https://doi.org/10.1021/acscatal.1c04547

    Article  CAS  Google Scholar 

  9. Ramaraj S, Seo J (2022) Intensive-visible-light-responsive ANbO2N (A = Sr, Ba) synthesized from layered perovskite A5Nb4O15 for enhanced photoelectrochemical water splitting. J Energy Chem 68:529–537. https://doi.org/10.1016/j.jechem.2021.12.015

    Article  CAS  Google Scholar 

  10. Zhang F et al (2012) Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J Am Chem Soc 134:8348–8351. https://doi.org/10.1021/ja301726c

    Article  CAS  Google Scholar 

  11. Hojamberdiev M et al (2016) The cross-substitution effect of tantalum on the visible-light-driven water oxidation activity of BaNbO2N crystals grown directly by an NH3-assisted flux method. J Mater Chem A 4:12807–12817. https://doi.org/10.1039/C6TA03786K

    Article  CAS  Google Scholar 

  12. Lin G, Wang R, Cao T, Yuan L, Xu X (2020) Zr modified SrNbO2N as an active photocatalyst for water oxidation under visible light illumination Inorg. Chem Front 7:2629–2636. https://doi.org/10.1039/D0QI00315H

    Article  CAS  Google Scholar 

  13. Sun X, Liu G, Xu X (2018) Defect management and efficient photocatalytic water oxidation reaction over Mg modified SrNbO2N. J Mater Chem A 6:10947–10957. https://doi.org/10.1039/C8TA00767E

    Article  CAS  Google Scholar 

  14. Ma SSK, Hisatomi T, Maeda K, Moriya Y, Domen K (2012) Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts. J Am Chem Soc 134:19993–19996. https://doi.org/10.1021/ja3095747

    Article  CAS  Google Scholar 

  15. Kado Y, Lee C, Lee K, Müller J, Moll M, Spiecker E, Schmuki P (2012) Enhanced water splitting activity of M-doped Ta3N5 (M = Na, K, Rb, Cs). Chem Commun 48:8685–8687. https://doi.org/10.1039/C2CC33822J

    Article  CAS  Google Scholar 

  16. Wu F, Sun X, Liu G, Xu X (2017) Actualizing efficient photocatalytic water oxidation over SrTaO2N by Na modification. Catal Sci Technol 7:4640–4647. https://doi.org/10.1039/C7CY01580A

    Article  CAS  Google Scholar 

  17. Xu C, Wang Y, Guo Q, Wang X (2023) Defect engineering of two-dimensional Nb-based oxynitrides for visible-light-driven water splitting to produce H2 and O2. Nanoscale Adv 5:3260–3266. https://doi.org/10.1039/D2NA00915C

    Article  CAS  Google Scholar 

  18. Seo J, Jeong S, Kim S (2021) Visible-light-driven water splitting over particulate LaNbON2 prepared from La-rich lanthanum niobium oxides ACS. Appl Energy Mater 4:3141–3150. https://doi.org/10.1021/acsaem.0c02930

    Article  CAS  Google Scholar 

  19. Wang X, Hisatomi T, Wang Z, Song J, Qu J, Takata T, Domen K (2019) Core-shell-structured LaTaON2 transformed from LaKNaTaO5 plates for enhanced photocatalytic H2 evolution. Angew Chem Int Edit 58:10666–10670. https://doi.org/10.1002/anie.201906081

    Article  CAS  Google Scholar 

  20. Hojamberdiev M et al (2016a) KCl flux-induced growth of isometric crystals of cadmium-containing early transition-metal (Ti4+, Nb5+, and Ta5+) oxides and nitridability to form their (oxy)nitride derivatives under an NH3 atmosphere for water splitting application. Appl Catal B: Environ 182:626–635. https://doi.org/10.1016/j.apcatb.2015.10.002

    Article  CAS  Google Scholar 

  21. Siritanaratkul B, Maeda K, Hisatomi T, Domen K (2011) Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands. ChemSusChem 4:74–78. https://doi.org/10.1002/cssc.201000207

    Article  CAS  Google Scholar 

  22. Zhu S, Xu Y, Li D, Song L, Wang Y (2023) High surface activity of Fe-doped NiCoP for the hydrogen evolution reaction New. J. Chem 47:17216–17219. https://doi.org/10.1039/d3nj02404k

    Article  CAS  Google Scholar 

  23. Li W, Wang Z, Li Y, Ghasemi J, Li Y, Zhang G (2022) Visible-NIR light-responsive 0D/2D CQDs/Sb2WO6 nanosheets with enhanced photocatalytic degradation performance of RhB: Unveiling the dual roles of CQDs and mechanism study. J Hazard Mater 424:127595. https://doi.org/10.1016/j.jhazmat.2021.127595

    Article  CAS  Google Scholar 

  24. Wang X, Wang Z, Li Y, Wang J, Zhang G (2022) Efficient photocatalytic CO2 conversion over 2D/2D Ni-doped CsPbBr3/Bi3O4Br Z-scheme heterojunction: critical role of Ni do**, boosted charge separation and mechanism study. Appl Catal B: Environ 319:121895. https://doi.org/10.1016/j.apcatb.2022.121895

    Article  CAS  Google Scholar 

  25. Wang X, Ren Y, Li Y, Zhang G (2022) Fabrication of 1D/2D BiPO4/g-C3N4 heterostructured photocatalyst with enhanced photocatalytic efficiency for NO removal. Chemosphere 287:132098. https://doi.org/10.1016/j.chemosphere.2021.132098

    Article  CAS  Google Scholar 

  26. Huang S, Lang J, Du C, Bian F, Su Y, Wang X (2017) Enhanced driving force and charge separation efficiency in disordered SnNbxOy: boosting photocatalytic activity toward water reduction. Chem Eng J 309:313–320. https://doi.org/10.1016/j.cej.2016.10.061

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2021BS02004, 2021BS02017, and 2020LH05007), the Research Funds of Inner Mongolia University of Technology (BS2020035), and the Scientific Research Project of Inner Mongolia University of Technology (ZZ202011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shushu Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 362 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, H., Zhang, H. et al. The substitution effect of tantalum on the visible-light-driven water reduction activity of SrNbO2N photocatalyst. J Nanopart Res 26, 16 (2024). https://doi.org/10.1007/s11051-024-05927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05927-2

Keywords

Navigation