Log in

Nanomedicine’s transformative impact on anti-diabetic drug discovery: an appraisal

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The role of nanotechnology in the diagnostics and therapeutics of diabetes has been widely known. In this paper, the authors have tried to comprehensively cover the recent advances in this field. After giving a brief account of diabetes and the limitations of the current anti-diabetic regime, the authors have discussed nanoparticle-based drug delivery systems for diabetes, quality and safety evaluation parameters of nano-based anti-diabetic therapeutics, and the limitations of conventional anti-diabetic therapies overcome by nanotechnology. This article also discusses the clearance mechanisms and toxicity concerns of NPs based on anti-diabetic drugs. The authors have summarized the current trends and suggested future directions for nanotechnology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

© 2021 Vijay Mishra et al., licensed under CC BY-SA 4.0

Fig. 2

© 2020 Rosita Primavera et al., licensed under CC BY-SA 4.0

Fig. 3
Fig. 4

© 2020 Rosita Primavera et al., licensed under CC BY-SA 4.0

Fig. 5

© 2023 Vijayakumar Natesan et al., licensed under Non-Commercial License

Fig. 6

© 2019 Eliana B. Souto et al., licensed under CC BY-SA 4.0

Fig. 7

© 2019 Sercombe et al., licensed under CC BY-SA 4.0

Fig. 8

© 2019 Vishwakarma Alok et al., licensed under CC0 Public Domain

Fig. 9

© 2022 Danyang Li et al., licensed under CC BY-NC-ND 4.0

Fig. 10

© 2022 Jpkrugerr, licensed under CC BY-SA 4.0

Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

T1DM :

Type 1 diabetes mellitus

T2DM :

Type 2 diabetes mellitus

GLP-1 :

Glucagon-like peptide-1

HbA1C :

Hemoglobin A1C

NLCs :

Nanostructured lipid carriers

SNEDDS :

Self-nano emulsifying drug delivery systems

SLNs :

Solid lipid nanoparticles

MRI :

Magnetic resonance imaging

SPIONs :

Superparamagnetic iron oxide nanoparticles

GOx :

Glucose oxidase

PBA :

Phenylboronic acid

ConA :

Concanavalin A

PLGA :

Polylactic-co-glycolic acid

IL-4 :

Interleukin-4

QDs :

Quantum dots

SGC-Lip :

Sodium glycocholate

SGF :

Simulated gastrointestinal fluids

CH-Lip :

Conventional liposomes

LBDDS :

Lipid-based drug delivery systems

SEDDS :

Self-emulsifying drug delivery systems

SMEDDS :

Self-micro emulsifying drug delivery systems

GS :

Gymnema sylvestre

SJ :

Syzygium jambolanum

siRNA :

Short interfering ribonucleic acid

CRISPR :

Clustered regularly interspaced short palindromic repeats

HuR :

Human antigen R

GLUT1 :

Glucose transporter-1

References

  1. Fröde TS, Medeiros YS (2008) Animal models to test drugs with potential antidiabetic activity. J Ethnopharmacol 115(2):173–183. https://doi.org/10.1016/j.jep.2007.10.038

    Article  CAS  Google Scholar 

  2. Berenson DF, Weiss AR, Wan Z, Weiss MA (2011) Insulin analogs for the treatment of diabetes mellitus: therapeutic applications of protein engineering. Ann N Y Acad Sci 1243:40–54

    Article  Google Scholar 

  3. Tamborlane WV et al (2009) Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med 359:1464–1476. https://doi.org/10.1016/s0084-3741(09)79371-0

    Article  Google Scholar 

  4. Shomali M (2012) Diabetes treatment in 2025: can scientific advances keep pace with prevalence? Ther Adv Endocrinol Metab 3(5):163–173. https://doi.org/10.1177/2042018812465639

    Article  Google Scholar 

  5. Saini K, Khan Y, Sharma S (2023) How effective are gliflozins as DPP-4 inhibitors? A computational study. Theor Found Chem Eng 57(3):403–410. https://doi.org/10.1134/S0040579523030168

    Article  CAS  Google Scholar 

  6. Uppal S, Italiya KS, Chitkara D, Mittal A (2018) Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: an emerging paradigm for effective therapy. Acta Biomater 81:20–42. https://doi.org/10.1016/j.actbio.2018.09.049

    Article  CAS  Google Scholar 

  7. Gupta D, Kono T, Evans-Molina C (2010) “The role of peroxisome proliferator-activated receptor γ in pancreatic β cell function and survival: therapeutic implications for the treatment of type 2 diabetes mellitus”, Diabetes. Obes Metab 12(12):1036–1047. https://doi.org/10.1111/j.1463-1326.2010.01299.x

    Article  CAS  Google Scholar 

  8. Shi S, Koya D, Kanasaki K (2016) Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. Fibrogenes Tissue Repair 9(1):1–10. https://doi.org/10.1186/s13069-016-0038-0

    Article  CAS  Google Scholar 

  9. Gentilella R, Pechtner V, Corcos A, Consoli A (2019) Glucagon-like peptide-1 receptor agonists in type 2 diabetes treatment: are they all the same? Diabetes Metab Res Rev 35(1):1–74. https://doi.org/10.1002/dmrr.3070

    Article  CAS  Google Scholar 

  10. Hodish I (2018) Insulin therapy for type 2 diabetes – are we there yet? Clin Diabetes Endocrinol 4(1):1–11. https://doi.org/10.1186/s40842-018-0056-5

    Article  Google Scholar 

  11. Saini K, Sharma S, Khan Y (2023) DPP-4 inhibitors for treating T2DM - hype or hope ? An analysis based on the current literature. Front Mol Biosci 4:1–19. https://doi.org/10.3389/fmolb.2023.1130625

    Article  CAS  Google Scholar 

  12. Kumar R, Kerins DM, Walther T (2016) Cardiovascular safety of anti-diabetic drugs. Eur Hear J - Cardiovasc Pharmacother 2(1):32–43. https://doi.org/10.1093/ehjcvp/pvv035

    Article  CAS  Google Scholar 

  13. Chaudhury A et al (2017) Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne) 8:1–12. https://doi.org/10.3389/fendo.2017.00006

    Article  Google Scholar 

  14. (2013) Standards of medical care in diabetes. Diabetes Care 36(SUPPL.1):11–66. https://doi.org/10.2337/dc13-S011

  15. Mishra V et al (2021) Emerging treatment strategies for diabetes mellitus and associated complications: an update. Pharmaceutics 13(10):1–33. https://doi.org/10.3390/pharmaceutics13101568

    Article  CAS  Google Scholar 

  16. Seedher N, Kanojia M (2009) Co-solvent solubilization of some poorly-soluble antidiabetic drugs solubilization antidiabetic drugs. Pharm Dev Technol 14(2):185–192. https://doi.org/10.1080/10837450802498894

    Article  CAS  Google Scholar 

  17. Rojas LBA, Gomes MB (2013) Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr 5(1):1–15. https://doi.org/10.1186/1758-5996-5-6

    Article  CAS  Google Scholar 

  18. Bhikshapathi D, Madhukar P, Kumar BD, Kumar GA (2013) Formulation and characterization of pioglitazone HCl self emulsifying drug delivery system. Der Pharm Lett 5(2):292–305

    CAS  Google Scholar 

  19. Bassyouni F et al (2021) Promising antidiabetic and antimicrobial agents based on fused pyrimidine derivatives: molecular modeling and biological evaluation with histopathological effect. Molecules 26(8):1–20. https://doi.org/10.3390/molecules26082370

    Article  CAS  Google Scholar 

  20. Evans M, Schumm-Draeger PM, Vora J, King AB (2011) A review of modern insulin analogue pharmacokinetic and pharmacodynamic profiles in type 2 diabetes: improvements and limitations. Diabetes Obes Metab 13(8):677–684. https://doi.org/10.1111/j.1463-1326.2011.01395.x

    Article  CAS  Google Scholar 

  21. Aghazadeh Y, Nostro MC (2017) Cell therapy for type 1 diabetes: current and future strategies. Curr Diab Rep 17(6):1–9. https://doi.org/10.1007/s11892-017-0863-6

    Article  CAS  Google Scholar 

  22. Wang L et al (2020) Functional gene module–based identification of phillyrin as an anticardiac fibrosis agent. Front Pharmacol 11:1–10. https://doi.org/10.3389/fphar.2020.01077

    Article  CAS  Google Scholar 

  23. Sheikh A (2013) Direct cardiovascular effects of glucagon like peptide-1. Diabetol Metab Syndr 5(1):1–13. https://doi.org/10.1186/1758-5996-5-47

    Article  CAS  Google Scholar 

  24. Filippatos TD, Panagiotopoulou TV, Elisaf MS (2014) Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud 11(3–4):202–230. https://doi.org/10.1900/RDS.2014.11.202

    Article  Google Scholar 

  25. Alhalmi A, Alzubaidi N, Abdulmalik W (2018) Current advances in nanotechnology for delivery of anti-diabetic drugs: a review. Int J Pharmacogn 5(1):100–107. https://doi.org/10.13040/IJPSR.0975-8232.IJP).1-07

    Article  Google Scholar 

  26. McFarlane SI (2009) Antidiabetic medications and weight gain: implications for the practicing physician. Curr Diab Rep 9(3):249–254. https://doi.org/10.1007/s11892-009-0040-7

    Article  Google Scholar 

  27. Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R (2014) Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 14(1):45–57. https://doi.org/10.1038/nrd4477

    Article  CAS  Google Scholar 

  28. Regnell SE, Lernmark Å (2017) Early prediction of autoimmune (type 1) diabetes. Diabetologia 60(8):1370–1381. https://doi.org/10.1007/s00125-017-4308-1

    Article  CAS  Google Scholar 

  29. Ferrannini E, Mari A, Nofrate V, Sosenko JM, Skyler JS (2010) Progression to diabetes in relatives of type 1 diabetic patients: mechanisms and mode of onset. Diabetes 59(3):679–685. https://doi.org/10.2337/db09-1378

    Article  CAS  Google Scholar 

  30. Lemmerman LR, Das D, Higuita-Castro N, Mirmira RG, Gallego-Perez D (2020) Nanomedicine-based strategies for diabetes: diagnostics, monitoring, and treatment. Trends Endocrinol Metab 31(6):448–458. https://doi.org/10.1016/j.tem.2020.02.001

    Article  CAS  Google Scholar 

  31. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6(1):13–22. https://doi.org/10.1038/nnano.2010.246

    Article  CAS  Google Scholar 

  32. Schroeder A et al (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12(1):39–50. https://doi.org/10.1038/nrc3180

    Article  CAS  Google Scholar 

  33. McNeil SE (2011) Unique benefits of nanotechnology to drug delivery and diagnostics. Charact Nanoparticles Intended Drug Deliv 697:3–8

    Article  CAS  Google Scholar 

  34. Venkatraman SS, Ma LL, Natarajan JV, Chattopadhyay S (2010) Polymer- and liposome-based nanoparticles in targeted drug delivery Subbu S. Venkatraman, Lwin Lwin Ma, Jayaganesh V. Natarajan, Sujay Chattopadhyay. Front Biosci S2(3):801–814

    Article  CAS  Google Scholar 

  35. Gao Y et al (2021) A novel preparative method for nanoparticle albumin-bound paclitaxel with high drug loading and its evaluation both in vitro and in vivo. PLoS One 16(4):1–25. https://doi.org/10.1371/journal.pone.0250670

    Article  CAS  Google Scholar 

  36. Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA (2019) Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol 10(11):1–40

  37. Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H (2014) Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 4(4):385–392. https://doi.org/10.1007/s13204-013-0216-y

    Article  CAS  Google Scholar 

  38. Léonard F, Talin AA (2011) Electrical contacts to one- and two-dimensional nanomaterials. Nat Nanotechnol 6(12):773–783. https://doi.org/10.1038/nnano.2011.196

    Article  CAS  Google Scholar 

  39. Bhatia S (2016) Natural polymer drug delivery systems nanoparticles: nanoparticles, mammals and microbes. Springer 1:1–225

  40. Pathak K, Raghuvanshi S (2015) Oral bioavailability: issues and solutions via nanoformulations. Clin Pharmacokinet 54(4):325–357. https://doi.org/10.1007/s40262-015-0242-x

    Article  CAS  Google Scholar 

  41. Soudry-Kochavi L, Naraykin N, Nassar T, Benita S (2015) Improved oral absorption of exenatide using an original nanoencapsulation and microencapsulation approach. J Control Release 217:202–210. https://doi.org/10.1016/j.jconrel.2015.09.012

    Article  CAS  Google Scholar 

  42. Sharma S, Bhatia V (2021) Nanoscale drug delivery systems for glaucoma: experimental and in silico advances. Curr Top Med Chem 21(2):115–125

    Article  CAS  Google Scholar 

  43. Sharma S (2022) The role of nanomedicine in COVID-19 therapeutics. Nanomedicine 17(3):133–136. https://doi.org/10.2217/nnm-2021-0358

    Article  CAS  Google Scholar 

  44. Samadder A, Khuda-Bukhsh AR (2014) Nanotechnological approaches in diabetes treatment: a new horizon. World J Transl Med 3(2):84–95. https://doi.org/10.5528/wjtm.v3.i2.84

    Article  Google Scholar 

  45. Choudhury S, Patra P (2023) Recent developments in nano-formulations against diabetes. Recent Pat Nanotechnol 17(4):340–358

    Article  CAS  Google Scholar 

  46. Liu H et al (2014) Improved oral bioavailability of glyburide by a self-nanoemulsifying drug delivery system. J Microencapsul 31(3):277–283. https://doi.org/10.3109/02652048.2013.843598

    Article  CAS  Google Scholar 

  47. Aslam M, Aqil M, Ahad A, Najmi AK, Sultana Y, Ali A (2016) Application of Box-Behnken design for preparation of glibenclamide loaded lipid based nanoparticles: optimization, in vitro skin permeation, drug release and in vivo pharmacokinetic study. J Mol Liq 219:897–908. https://doi.org/10.1016/j.molliq.2016.03.069

    Article  CAS  Google Scholar 

  48. Mohd AB, Sanka K, Bandi S, Diwan PV, Shastri N (2015) Solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of glimepiride: development and antidiabetic activity in albino rabbits. Drug Deliv 22(4):499–508. https://doi.org/10.3109/10717544.2013.879753

    Article  CAS  Google Scholar 

  49. Liu J et al (2008) Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm 356(1–2):333–344. https://doi.org/10.1016/j.ijpharm.2008.01.008

    Article  CAS  Google Scholar 

  50. Forst T et al (2009) Time-action profile and patient assessment of inhaled insulin via the Exubera device in comparison with subcutaneously injected insulin aspart via the FlexPen device. Diabetes Technol Ther 11(2):87–92. https://doi.org/10.1089/dia.2008.0039

    Article  CAS  Google Scholar 

  51. Fischer A (2014) Afrezza, inhaled insulin, Wins FDA Approval. Am J Manag Care 20(13):304

    Google Scholar 

  52. Neumiller JJ, Campbell RK (2010) Technosphere insulin. BioDrugs 24(3):165–172. https://doi.org/10.2165/11536700-000000000-00000

    Article  CAS  Google Scholar 

  53. Naesens M, Sarwal MM (2010) Molecular diagnostics in transplantation. Nat Rev Nephrol 6(10):614–628. https://doi.org/10.1038/nrneph.2010.113

    Article  CAS  Google Scholar 

  54. Sharma S, Bhatia V (2021) Magnetic nanoparticles in microfluidics-based diagnostics: an appraisal. Nanomedicine 16(15):1329–1342. https://doi.org/10.2217/nnm-2021-0007

    Article  CAS  Google Scholar 

  55. Saini K, Sharma S, Bhatia V, Zaidi S (2023) Recent advances in mass spectrometry : an appraisal of fundamentals and applications. J Mol Chem 3(1):1–13

    Google Scholar 

  56. Reiner T et al (2011) Accurate measurement of pancreatic islet β-cell mass using a second-generation fluorescent exendin-4 analog. Proc Natl Acad Sci USA 108(31):12815–12820. https://doi.org/10.1073/pnas.1109859108

    Article  Google Scholar 

  57. Malaisse WJ, Maedler K (2012) Imaging of the β-cells of the islets of Langerhans. Diabetes Res Clin Pract 98(1):11–18. https://doi.org/10.1016/j.diabres.2012.07.001

    Article  CAS  Google Scholar 

  58. Fu W et al (2012) Early window of diabetes determinism in NOD mice, dependent on the complement receptor CRIg, identified by noninvasive imaging. Nat Immunolofy 13(4):361–368. https://doi.org/10.1038/ni.2233.Early

    Article  CAS  Google Scholar 

  59. Li D et al (2011) Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR). Proc Natl Acad Sci USA 108(52):21063–21068. https://doi.org/10.1073/pnas.1109773109

    Article  Google Scholar 

  60. Lee N et al (2011) Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci U S A 108(7):2662–2667. https://doi.org/10.1073/pnas.1016409108

    Article  Google Scholar 

  61. Leibiger IB, Caicedo A, Berggren PO (2012) Non-invasive in vivo imaging of pancreatic β-cell function and survival – a perspective. Acta Physiol 204(2):178–185. https://doi.org/10.1111/j.1748-1716.2011.02301.x.Non-invasive

    Article  CAS  Google Scholar 

  62. Andralojc K et al (2012) Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis. Diabetologia 55(5):1247–1257. https://doi.org/10.1007/s00125-012-2491-7

    Article  CAS  Google Scholar 

  63. Primavera R et al (2020) Emerging nano- and micro-technologies used in the treatment of type-1 diabetes. Nanomaterials 10:1–27

    Article  Google Scholar 

  64. Hrkach J et al (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):1–12. https://doi.org/10.1126/scitranslmed.3003651

    Article  Google Scholar 

  65. McCarthy JR (2010) Nanomedicine and cardiovascular disease. Curr Cardiovasc Imaging Rep 3(1):42–49. https://doi.org/10.1007/s12410-009-9002-3.Nanomedicine

    Article  Google Scholar 

  66. Wei W, Ehlerding EB, Lan X, Luo QY, Cai W (2019) Molecular imaging of β-cells: diabetes and beyond. Adv Drug Deliv Rev 139:16–31. https://doi.org/10.1016/j.addr.2018.06.022

    Article  CAS  Google Scholar 

  67. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265. https://doi.org/10.1016/j.addr.2008.03.018.Magnetic

    Article  CAS  Google Scholar 

  68. Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM (2012) Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336(6081):604–608. https://doi.org/10.1126/science.1216753.Radio-Wave

    Article  CAS  Google Scholar 

  69. Claussen JC, Kim SS, Haque AU, Artiles MS, Porterfield DM, Fisher TS (2010) Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes. J Diabetes Sci Technol 4(2):312–319. https://doi.org/10.1177/193229681000400211

    Article  Google Scholar 

  70. Hoedemaekers CWE, Klein Gunnewiek JMT, Prinsen MA, Willems JL, Van Der Hoeven JG (2008) Accuracy of bedside glucose measurement from three glucometers in critically ill patients. Crit Care Med 36(11):3062–3066. https://doi.org/10.1097/CCM.0b013e318186ffe6

    Article  CAS  Google Scholar 

  71. Chen PC, Wan LS, Ke BB, Xu ZK (2011) Honeycomb-patterned film segregated with phenylboronic acid for glucose sensing. Langmuir 27(20):12597–12605. https://doi.org/10.1021/la201911f

    Article  CAS  Google Scholar 

  72. Liao KC, Hogen-Esch T, Richmond FJ, Marcu L, Clifton W, Loeb GE (2008) Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo. Biosens Bioelectron 23(10):1458–1465. https://doi.org/10.1016/j.bios.2008.01.012

    Article  CAS  Google Scholar 

  73. Parmpi P, Kofinas P (2004) Biomimetic glucose recognition using molecularly imprinted polymer hydrogels. Biomaterials 25(10):1969–1973. https://doi.org/10.1016/j.biomaterials.2003.08.025

    Article  CAS  Google Scholar 

  74. Edelman GM, Cunningham BA, Reeke GN, Becker JW, Waxdal MJ, Wang JL (1972) The covalent and three-dimensional structure of concanavalin A. Proc Natl Acad Sci USA 69(9):2580–2584. https://doi.org/10.1073/pnas.69.9.2580

    Article  CAS  Google Scholar 

  75. Jiang H, **a C, Lin J, Garalleh HAL, Alalawi A, Pugazhendhi A (2023) Carbon nanomaterials: a growing tool for the diagnosis and treatment of diabetes mellitus. Environ Res 221:1–8. https://doi.org/10.1016/j.envres.2023.115250

    Article  CAS  Google Scholar 

  76. Liu W et al (2019) Graphene quantum dot-functionalized three-dimensional ordered mesoporous ZnO for acetone detection toward diagnosis of diabetes. Nanoscale 11(24):11496–11504. https://doi.org/10.1039/c9nr00942f

    Article  CAS  Google Scholar 

  77. McMahon GT, Arky RA (2007) Inhaled insulin for diabetes mellitus. N Engl J Med 356:497–502. https://doi.org/10.2146/ajhp040249

    Article  CAS  Google Scholar 

  78. Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64(6):557–570. https://doi.org/10.1016/j.addr.2011.12.009

    Article  CAS  Google Scholar 

  79. Pegoraro C, MacNeil S, Battaglia G (2012) Transdermal drug delivery: from micro to nano. Nanoscale 4(6):1881–1894. https://doi.org/10.1039/c2nr11606e

    Article  CAS  Google Scholar 

  80. Singh SR, Ahmad F, Lal A, Yu C, Bai Z, Bpharm HB (2009) Efficacy and safety of insulin analogues for the management of diabetes mellitus: a meta-analysis. Can Med Assoc J 180(4):385–397. https://doi.org/10.1503/cmaj.081041

    Article  Google Scholar 

  81. Arbit E, Kidron M (2009) Oral insulin: the rationale for this approach and current developments. J Diabetes Sci Technol 3(3):562–567. https://doi.org/10.1177/193229680900300322

    Article  Google Scholar 

  82. Shoaib A et al (2023) A nanotechnology-based approach to biosensor application in current diabetes management practices. Nanomaterials 13(5):1–21. https://doi.org/10.3390/nano13050867

    Article  CAS  Google Scholar 

  83. Farrokhnia M, Amoabediny G, Ebrahimi M, Ganjali M, Arjmand M (2022) Ultrasensitive early detection of insulin antibody employing novel electrochemical nano-biosensor based on controllable electro-fabrication process. Talanta 238:1–12. https://doi.org/10.1016/j.talanta.2021.122947

    Article  CAS  Google Scholar 

  84. Gu Z et al (2013) Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 7(8):6758–6766. https://doi.org/10.1021/nn401617u

    Article  CAS  Google Scholar 

  85. Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW (2009) In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials 30(12):2329–2339. https://doi.org/10.1016/j.biomaterials.2008.12.066

    Article  CAS  Google Scholar 

  86. Du L, Li Z, Yao J, Wen G, Dong C, Li HW (2019) Enzyme free glucose sensing by amino-functionalized silicon quantum dot. Spectrochim Acta - Part A Mol Biomol Spectrosc 216:303–309. https://doi.org/10.1016/j.saa.2019.03.071

    Article  CAS  Google Scholar 

  87. Wu Q, Wang L, Yu H, Wang J, Chen Z (2011) Organization of glucose-responsive systems and their properties. Chem Rev 111(12):7855–7875. https://doi.org/10.1021/cr200027j

    Article  CAS  Google Scholar 

  88. Matsumoto A, Yoshida R, Kataoka K (2004) Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromol 5(3):1038–1045. https://doi.org/10.1021/bm0345413

    Article  CAS  Google Scholar 

  89. Uchiyama T, Kiritoshi Y, Watanabe J, Ishihara K (2003) Degradation of phospholipid polymer hydrogel by hydrogen peroxide aiming at insulin release device. Biomaterials 24(28):5183–5190. https://doi.org/10.1016/S0142-9612(03)00441-1

    Article  CAS  Google Scholar 

  90. Yavuz MS et al (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8(12):935–939. https://doi.org/10.1038/nmat2564

    Article  CAS  Google Scholar 

  91. Korin N et al (2012) Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337(6095):738–742. https://doi.org/10.1126/science.337.6101.1453-d

    Article  CAS  Google Scholar 

  92. Di J, Price J, Gu X, Jiang X, **g Y, Gu Z (2014) Ultrasound-triggered regulation of blood glucose levels using injectable nano-network. Adv Healthc Mater 3(1):811–816. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf

  93. Owens DR (2002) New horizons – alternative routes for insulin therapy. Nat Rev Drug Discov 1(7):529–540. https://doi.org/10.1038/nrd836

    Article  CAS  Google Scholar 

  94. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149. https://doi.org/10.2147/ijn.s596

    Article  Google Scholar 

  95. Natesan V, Kim SJ (2023) The trend of organic based nanoparticles in the treatment of diabetes and its perspectives. Biomol Ther 31(1):16–26. https://doi.org/10.4062/biomolther.2022.080

    Article  CAS  Google Scholar 

  96. Liu LS, Fishman ML, Hicks KB (2007) Pectin in controlled drug delivery – a review. Cellulose 14(1):15–24. https://doi.org/10.1007/s10570-006-9095-7

    Article  CAS  Google Scholar 

  97. Souto EB et al (2019) Nanoparticle delivery systems in the treatment of diabetes complications. Molecules 24(23):1–29. https://doi.org/10.3390/molecules24234209

    Article  CAS  Google Scholar 

  98. Kumar GP, Rajeshwarrao P (2011) Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B 1(4):208–219. https://doi.org/10.1016/j.apsb.2011.09.002

    Article  CAS  Google Scholar 

  99. Zhang X, Qi J, Lu Y, Hu X, He W, Wu W (2014) Enhanced hypoglycemic effect of biotin-modified liposomes loading insulin: effect of formulation variables, intracellular trafficking, and cytotoxicity. Nanoscale Res Lett 9(1):1–10. https://doi.org/10.1186/1556-276X-9-185

    Article  CAS  Google Scholar 

  100. Wu ZH, ** QN, Wei Y, Lai JM (2004) Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice. Acta Pharmacol Sin 25(7):966–972

    CAS  Google Scholar 

  101. Agrawal AK, Harde H, Thanki K, Jain S (2014) Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromol 15(1):350–360. https://doi.org/10.1021/bm401580k

    Article  CAS  Google Scholar 

  102. Hu S et al (2013) Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media. Int J Pharm 441(1–2):693–700. https://doi.org/10.1016/j.ijpharm.2012.10.025

    Article  CAS  Google Scholar 

  103. Sercombe, Veerati M, Wu S, Hua (2019) Schematic representation of the different types of liposomal drug delivery systems. Wikimedia Commons. https://doi.org/10.3389/fphar.2015.00286

  104. Hasan AA, Madkor H, Wageh S (2013) Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Deliv 20(3–4):120–126. https://doi.org/10.3109/10717544.2013.779332

    Article  CAS  Google Scholar 

  105. Mohsen AM, AbouSamra MM, ElShebiney SA (2017) Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsulation: in-vitro characterization and in-vivo evaluation. Drug Dev Ind Pharm 43(8):1254–1264. https://doi.org/10.1080/03639045.2017.1310224

    Article  CAS  Google Scholar 

  106. Alok V, Bipin (2011) Niosomes. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:NiosomeALOK.JPG

  107. Kalepu S, Manthina M, Padavala V (2013) Oral lipid-based drug delivery systems – an overview. Acta Pharm Sin B 3(6):361–372. https://doi.org/10.1016/j.apsb.2013.10.001

    Article  Google Scholar 

  108. Shrestha H, Bala R, Arora S (2014) Lipid-based drug delivery systems. J Pharm 2014:1–10. https://doi.org/10.1155/2014/801820

    Article  CAS  Google Scholar 

  109. Porter CJH, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6(3):231–248. https://doi.org/10.1038/nrd2197

    Article  CAS  Google Scholar 

  110. Agrawal AG, Kumar A, Gide PS (2015) Self emulsifying drug delivery system for enhanced solubility and dissolution of glipizide. Colloids Surfaces B Biointerfaces 126:553–560. https://doi.org/10.1016/j.colsurfb.2014.11.022

    Article  CAS  Google Scholar 

  111. Hyma P, Abbulu K (2013) Formulation and characterisation of self-microemulsifying drug delivery system of pioglitazone. Biomed Prev Nutr 3(4):345–350. https://doi.org/10.1016/j.bionut.2013.09.005

    Article  Google Scholar 

  112. Cavanagh RJ, Smith PA, Stolnik S (2019) Exposure to a nonionic surfactant induces a response akin to heat-shock apoptosis in intestinal epithelial cells: implications for excipients safety. Mol Pharm 16(2):618–631. https://doi.org/10.1021/acs.molpharmaceut.8b00934

    Article  CAS  Google Scholar 

  113. Li HY et al (2016) Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique. Int J Nanomedicine 11:3777–3788. https://doi.org/10.2147/IJN.S105419

    Article  CAS  Google Scholar 

  114. Yin YM et al (2009) Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J Control Release 140(2):86–94. https://doi.org/10.1016/j.jconrel.2009.08.015

    Article  CAS  Google Scholar 

  115. Akhtar J, Siddiqui HH, Fareed S, Badruddeen, Khalid M, Aqil M (2015) Nanoemulsion: for improved oral delivery of repaglinide. Drug Deliv 23(6):2026–2034. https://doi.org/10.3109/10717544.2015.1077290

    Article  CAS  Google Scholar 

  116. Patra JK et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 16:1–33. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  117. Callender SP, Mathews JA, Kobernyk K, Wettig SD (2017) Microemulsion utility in pharmaceuticals: implications for multi-drug delivery. Int J Pharm 526(1–2):425–442. https://doi.org/10.1016/j.ijpharm.2017.05.005

    Article  CAS  Google Scholar 

  118. Rafshanjani MAS, Rahman MM, Parvin S, Kader MA (2015) Dissolution enhancement of glimepiride dispersion using glyceryl monostearate and ?-cyclodextrin as carrier. Int Curr Pharm J 4(10):436–441. https://doi.org/10.3329/icpj.v4i10.24912

    Article  Google Scholar 

  119. Gonçalves LMD, Maestrelli F, Mannelli LC, Ghelardini C, Almeida AJ, Mura P (2016) Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur J Pharm Biopharm 102(16):41–50. https://doi.org/10.1016/j.ejpb.2016.02.012

    Article  CAS  Google Scholar 

  120. Paliwal R et al (2009) Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine Nanotechnol Biol Med 5(2):184–191. https://doi.org/10.1016/j.nano.2008.08.003

    Article  CAS  Google Scholar 

  121. Elbahwy IA, Ibrahim HM, Ismael HR, Kasem AA (2017) Enhancing bioavailability and controlling the release of glibenclamide from optimized solid lipid nanoparticles. J Drug Deliv Sci Technol 38:78–89. https://doi.org/10.1016/j.jddst.2017.02.001

    Article  CAS  Google Scholar 

  122. Ravi PR, Aditya N, Kathuria H, Malekar S, Vats R (2014) Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, in vivo evaluation and uptake mechanism. Eur J Pharm Biopharm 87(1):114–124. https://doi.org/10.1016/j.ejpb.2013.12.015

    Article  CAS  Google Scholar 

  123. Mansour RN et al (2018) Collagen coated electrospun polyethersulfon nanofibers improved insulin producing cells differentiation potential of human induced pluripotent stem cells. Artif Cells, Nanomedicine Biotechnol 46(Suppl. 3):734–739. https://doi.org/10.1080/21691401.2018.1508031

    Article  CAS  Google Scholar 

  124. Enderami SE et al (2018) Generation of insulin-producing cells from human induced pluripotent stem cells on PLLA/PVA nanofiber scaffold. Artif Cells, Nanomedicine Biotechnol 46(Suppl. 1):1062–1069. https://doi.org/10.1080/21691401.2018.1443466

    Article  CAS  Google Scholar 

  125. Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28(6):621–630. https://doi.org/10.1081/DDC-120003853

    Article  Google Scholar 

  126. Cesur S et al (2021) Metformin-loaded polymer-based microbubbles/nanoparticles generated for the treatment of type 2 diabetes mellitus. Langmuir 1–12. https://doi.org/10.1021/acs.langmuir.1c00587

  127. de Vos P, Faas MM, Strand B, Calafiore R (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27(32):5603–5617. https://doi.org/10.1016/j.biomaterials.2006.07.010

    Article  CAS  Google Scholar 

  128. Yang J et al (2019) Pancreatic islet surface engineering with a starPEG-chondroitin sulfate nanocoating. Biomater Sci 7(6):2308–2316. https://doi.org/10.1039/c9bm00061e

    Article  CAS  Google Scholar 

  129. Rani R et al (2019) Antidiabetic activity enhancement in streptozotocin + nicotinamide–induced diabetic rats through combinational polymeric nanoformulation. Int J Nanomedicine 14:4383–4395. https://doi.org/10.2147/IJN.S205319

    Article  CAS  Google Scholar 

  130. Sonaje K et al (2010) Enteric-coated capsules filled with freeze-dried chitosan/poly(γ-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials 31(12):3384–3394. https://doi.org/10.1016/j.biomaterials.2010.01.042

    Article  CAS  Google Scholar 

  131. Boddupalli BM, Masana P, Anisetti RN, Kallem SV, Madipoju B (2013) Formulation and evaluation of Pioglitazone loaded Bovine serum albumin nanoparticles along with Piperine. Drug Invent Today 5(3):212–215. https://doi.org/10.1016/j.dit.2013.05.011

    Article  CAS  Google Scholar 

  132. Abozaid OAR, El-Sonbaty SM, Hamam NMA, Farrag MA, Kodous AS (2023) Chitosan-encapsulated nano-selenium targeting TCF7L2, PPARγ, and CAPN10 genes in diabetic rats. Biol Trace Elem Res 201(1):306–323. https://doi.org/10.1007/s12011-022-03140-7

    Article  CAS  Google Scholar 

  133. Li YP et al (2001) PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release 71(2):203–211. https://doi.org/10.1016/S0168-3659(01)00218-8

    Article  CAS  Google Scholar 

  134. Israel EJ et al (1997) Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 92(1):69–74. https://doi.org/10.1046/j.1365-2567.1997.00326.x

    Article  CAS  Google Scholar 

  135. Pridgen EM et al (2013) Transepithelial transport of Fc -targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci Transl Med 213(5):1–19. https://doi.org/10.1126/scitranslmed.3007049.Transepithelial

    Article  Google Scholar 

  136. Shi Y et al (2018) Fc-modified exenatide-loaded nanoparticles for oral delivery to improve hypoglycemic effects in mice. Sci Rep 8(1):1–9. https://doi.org/10.1038/s41598-018-19170-y

    Article  CAS  Google Scholar 

  137. Ravichandran R (2013) Pharmacokinetic and pharmacodynamic studies on nanoparticulate gymnemic acids. Int J Biochem Biotechnol 2(3):282–288

    Google Scholar 

  138. Samadder A, Das S, Das J, Paul A, Khuda-Bukhsh AR (2012) Ameliorative effects of Syzygium jambolanum extract and its poly (lactic-co-glycolic) acid nano-encapsulated form on arsenic-induced hyperglycemic stress: a multi-parametric evaluation. J Acupunct Meridian Stud 5(6):310–318. https://doi.org/10.1016/j.jams.2012.09.001

    Article  Google Scholar 

  139. Patel R, Barker J, Elshaer A (2020) Pharmaceutical excipients and drug metabolism: a mini-review. Int J Mol Sci 21:1–21. https://doi.org/10.3390/ijms21218224

    Article  CAS  Google Scholar 

  140. Diab R, Jaafar-Maalej C, Fessi H, Maincent P (2012) Engineered nanoparticulate drug delivery systems: the next frontier for oral administration. Am Assoc Pharm Sci 14(4):688–702. https://doi.org/10.1208/s12248-012-9377-y

    Article  CAS  Google Scholar 

  141. Liu L, Yao WD, Rao YF, Lu XY, Gao JQ (2017) pH-responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv 24(1):569–581. https://doi.org/10.1080/10717544.2017.1279238

    Article  Google Scholar 

  142. Yadav SK, Mishra S, Mishra B (2012) Eudragit-based nanosuspension of poorly water-soluble drug: formulation and in vitro-in vivo evaluation. Am Assoc Pharm Sci 13(4):1031–1044. https://doi.org/10.1208/s12249-012-9833-0

    Article  CAS  Google Scholar 

  143. Naha PC, Byrne HJ, Panda AK (2013) Role of polymeric excipients on controlled release profile of glipizide from PLGA and Eudragit RS 100 nanoparticles. J Nanopharmaceutics Drug Deliv 1(1):74–81. https://doi.org/10.1166/jnd.2013.1005

    Article  Google Scholar 

  144. Cetin M, Atila A, Sahin S, Vural I (2013) Preparation and characterization of metformin hydrochloride loaded-Eudragit®RSPO and Eudragit®RSPO/PLGA nanoparticles. Pharm Dev Technol 18(3):570–576. https://doi.org/10.3109/10837450.2011.604783

    Article  CAS  Google Scholar 

  145. Devarajan PV, Sonavane GS (2007) Preparation and in vitro/in vivo evaluation of gliclazide loaded Eudragit nanoparticles as a sustained release carriers. Drug Dev Ind Pharm 33(2):101–111. https://doi.org/10.1080/03639040601096695

    Article  CAS  Google Scholar 

  146. Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A (2010) Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm - Drug Res 67(3):283–290

    CAS  Google Scholar 

  147. Kakkar R, Sharma S, Badhani B (2014) Density functional study of functionalization of carbon nanotubes with carbenes. Can Chem Trans 2(4):434–449. https://doi.org/10.13179/canchemtrans.2014.02.04.0132

    Article  Google Scholar 

  148. Kakkar R, Sharma S (2011) DFT study of interactions of carbenes with boron nitride nanotubes. Chem J 1(1):9–20

    CAS  Google Scholar 

  149. Baptista P et al (2015) Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial. Nanobiosensors Dis Diagnosis 4:11–23. https://doi.org/10.2147/ndd.s60285

    Article  Google Scholar 

  150. Mirazi N, Shoaei J, Khazaei A, Hosseini A (2015) A comparative study on effect of metformin and metformin-conjugated nanotubes on blood glucose homeostasis in diabetic rats. Eur J Drug Metab Pharmacokinet 40(3):343–348. https://doi.org/10.1007/s13318-014-0213-x

    Article  CAS  Google Scholar 

  151. Lu Y et al (2018) Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat Biomed Eng 2(5):318–325. https://doi.org/10.1038/s41551-018-0234-x.Micelles

    Article  CAS  Google Scholar 

  152. Kassem AA, Abd El-Alim SH, Basha M, Salama A (2017) Phospholipid complex enriched micelles: a novel drug delivery approach for promoting the antidiabetic effect of repaglinide. Eur J Pharm Sci 99:75–84. https://doi.org/10.1016/j.ejps.2016.12.005

    Article  CAS  Google Scholar 

  153. Scott-Moncrieff JC, Shao Z, Mitra AK (1994) Enhancement of intestinal insulin absorption by bile salt–fatty acid mixed micelles in dogs. J Pharm Sci 83(10):1465–1469. https://doi.org/10.1002/jps.2600831020

    Article  CAS  Google Scholar 

  154. Wang B et al (2009) Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-a-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir 25(21):12522–12528. https://doi.org/10.1021/la901776a

    Article  CAS  Google Scholar 

  155. Kim S, Shi Y, Kim JY, Park K, Cheng JX (2010) Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv 7(1):49–62. https://doi.org/10.1517/17425240903380446

    Article  CAS  Google Scholar 

  156. Jpkrugerr (2022) Drug-loaded dextran micelles.pdf. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Figure_3.0_-_Drug-loaded_dextran_micelle.png

  157. Shrestha N et al (2018) The stimulation of GLP-1 secretion and delivery of GLP-1 agonists: via nanostructured lipid carriers. Nanoscale 10(2):603–613. https://doi.org/10.1039/c7nr07736j

    Article  CAS  Google Scholar 

  158. Ebrahimi HA, Javadzadeh Y, Hamidi M, BarzegarJalali M (2016) Development and characterization of a novel lipohydrogel nanocarrier: repaglinide as a lipophilic model drug. J Pharm Pharmacol 68(4):450–458. https://doi.org/10.1111/jphp.12537

    Article  CAS  Google Scholar 

  159. Kim JY et al (2013) Multilayer nanoparticles for sustained delivery of exenatide to treat type 2 diabetes mellitus. Biomaterials 34(33):8444–8449. https://doi.org/10.1016/j.biomaterials.2013.07.040

    Article  CAS  Google Scholar 

  160. Chen C, Zheng H, Xu J, Shi X, Li F, Wang X (2017) Sustained-release study on exenatide loaded into mesoporous silica nanoparticles: in vitro characterization and in vivo evaluation. J Pharm Sci 25(1):1–8. https://doi.org/10.1186/s40199-017-0186-9

    Article  CAS  Google Scholar 

  161. Alimardani V et al (2021) Microneedle arrays combined with nanomedicine approaches for transdermal delivery of therapeutics. J Clin Med 10(2):1–33. https://doi.org/10.3390/jcm10020181

    Article  CAS  Google Scholar 

  162. Wang M, Marepally SK, Vemula PK, Xu C (2016) Inorganic nanoparticles for transdermal drug delivery and topical application. Nanosci Dermatol 1:57–72

  163. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268. https://doi.org/10.1038/nbt.1504

    Article  CAS  Google Scholar 

  164. Zhang Y et al (2019) Advances in transdermal insulin delivery. Adv Drug Deliv Rev 139:51–70. https://doi.org/10.1016/j.addr.2018.12.006.Advances

    Article  CAS  Google Scholar 

  165. Il Choi W, Lee JH, Kim JY, Kim JC, Kim YH, Tae G (2012) Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J Control Release 157(2):272–278. https://doi.org/10.1016/j.jconrel.2011.08.013

    Article  CAS  Google Scholar 

  166. Lopez RFV, Seto JE, Blankschtein D, Langer R (2011) Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials 32(3):933–941. https://doi.org/10.1016/j.biomaterials.2010.09.060.Enhancing

    Article  CAS  Google Scholar 

  167. Higaki M et al (2006) Transdermal delivery of CaCO 3 – nanoparticles containing insulin. Diabetes Technol Ther 8(3):369–374

    Article  CAS  Google Scholar 

  168. Ahmed TA, El-Say KM, Aljaeid BM, Fahmy UA, Abd-Allah FI (2016) Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: preparation, characterization, in vitro, ex vivo and clinical evaluation. Int J Pharm 500(1–2):245–254. https://doi.org/10.1016/j.ijpharm.2016.01.017

    Article  CAS  Google Scholar 

  169. Sharma RK, Sharma N, Rana S, Shivkumar HG (2013) Solid lipid nanoparticles as a carrier of metformin for transdermal delivery. Int J Drug Deliv 5(2):137–145. https://doi.org/10.5138/ijdd.v5i2.1009

    Article  Google Scholar 

  170. Alam S et al (2016) Nanostructured lipid carriers of pioglitazone for transdermal application: from experimental design to bioactivity detail. Drug Deliv 23(2):601–609. https://doi.org/10.3109/10717544.2014.923958

    Article  CAS  Google Scholar 

  171. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2013) Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 19:29–43. https://doi.org/10.1016/j.ifset.2013.03.002

    Article  CAS  Google Scholar 

  172. Ahmed OAA, Afouna MI, El-Say KM, Abdel-Naim AB, Khedr A, Banjar ZM (2014) Optimization of self-nanoemulsifying systems for the enhancement of in vivo hypoglycemic efficacy of glimepiride transdermal patches. Expert Opin Drug Deliv 11(7):1005–1013. https://doi.org/10.1517/17425247.2014.906402

    Article  CAS  Google Scholar 

  173. Youssef JR, Boraie NA, Ibrahim HF, Ismail FA, El-moslemany RM (2021) Glibenclamide nanocrystal-loaded bioactive polymeric scaffolds for skin regeneration : in vitro characterization and preclinical evaluation. Pharmaceutics 13:1–33

    Article  Google Scholar 

  174. Vijayan V, Reddy KR, Sakthivel S, Swetha C (2013) Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: in vitro and in vivo studies. Colloids Surfaces B Biointerfaces 111:150–155. https://doi.org/10.1016/j.colsurfb.2013.05.020

    Article  CAS  Google Scholar 

  175. Shende P, Patel C (2019) siRNA: an alternative treatment for diabetes and associated conditions. J Drug Target 27(2):174–182. https://doi.org/10.1080/1061186X.2018.1476518

    Article  CAS  Google Scholar 

  176. Zhang Q et al (2010) In vivo delivery of gremlin siRNA plasmid reveals therapeutic potential against diabetic nephropathy by recovering bone morphogenetic protein-7. PLoS One 5(7):1–13. https://doi.org/10.1371/journal.pone.0011709

    Article  CAS  Google Scholar 

  177. Amadio M et al (2016) Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat. Pharmacol Res 111:713–720. https://doi.org/10.1016/j.phrs.2016.07.042

    Article  CAS  Google Scholar 

  178. You ZP et al (2017) Suppression of diabetic retinopathy with GLUT1 siRNA. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-07942-x

    Article  CAS  Google Scholar 

  179. Jeong JH et al (2010) Non-viral systemic delivery of Fas siRNA suppresses cyclophosphamide-induced diabetes in NOD mice. J Control Release 143(1):88–94. https://doi.org/10.1016/j.jconrel.2009.12.005

    Article  CAS  Google Scholar 

  180. Rabbani PS et al (2017) Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing. Biomaterials 132:1–15. https://doi.org/10.1016/j.biomaterials.2017.04.001

    Article  CAS  Google Scholar 

  181. Layliev J, Wilson S, Warren SM, Saadeh PB (2012) Improving wound healing with topical gene therapy. Adv Wound Care 1(5):218–223. https://doi.org/10.1089/wound.2011.0322

    Article  Google Scholar 

  182. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.2307/4589497

    Article  CAS  Google Scholar 

  183. Barrangou R (2015) The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32:36–41. https://doi.org/10.1016/j.coi.2014.12.008

    Article  CAS  Google Scholar 

  184. Yue J, Gou X, Li C, Wicksteed B, Wu X (2017) Engineered epidermal progenitor cells can correct diet-induced obesity and diabetes. Cell Stem Cell 21(2):256–263. https://doi.org/10.1016/j.stem.2017.06.016.Engineered

    Article  CAS  Google Scholar 

  185. Agarawal K, Anant Kulkarni Y, Wairkar S (2023) Nanoformulations of flavonoids for diabetes and microvascular diabetic complications. Drug Deliv Transl Res 13(1):18–36. https://doi.org/10.1007/s13346-022-01174-x

    Article  CAS  Google Scholar 

  186. Shoaib A et al (2022) Integrating nanotechnology with naturally occurring phytochemicals in neuropathy induced by diabetes. J Mol Liq 350:1–10. https://doi.org/10.1016/j.molliq.2021.118189

    Article  CAS  Google Scholar 

  187. Saini K, Sharma S, Bhatia V, Khan Y, Etters L (2023) Dietary polyphenolics : mechanistic role in control management of diabetes and metabolic syndrome. Chem Biol Lett 10(3):1–16

    Google Scholar 

  188. Wang S, Du S, Wang W, Zhang F (2020) Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy. Biomed Pharmacother 130:1–7. https://doi.org/10.1016/j.biopha.2020.110573

    Article  CAS  Google Scholar 

  189. Maity S, Chakraborti AS (2020) Formulation, physico-chemical characterization and antidiabetic potential of naringenin-loaded poly D, L lactide-co-glycolide (N-PLGA) nanoparticles. Eur Polym J 134:1–10. https://doi.org/10.1016/j.eurpolymj.2020.109818

    Article  CAS  Google Scholar 

  190. Alalwani AD, Hummdi LA, Qahl SH (2022) Effect of nano extracts of olea europaea leaves, ficus carica and liraglutide in lipidemic liver of type 2 diabetic rat model. Saudi J Biol Sci 29(7):1–8. https://doi.org/10.1016/j.sjbs.2022.103333

    Article  CAS  Google Scholar 

  191. Liu M et al (2023) Recent advances in nano-drug delivery systems for the treatment of diabetic wound healing. Int J Nanomedicine 18:1537–1560. https://doi.org/10.2147/IJN.S395438

    Article  Google Scholar 

  192. Shah SA, Sohail M, Karperien M, Johnbosco C, Mahmood A, Kousar M (2023) Chitosan and carboxymethyl cellulose-based 3D multifunctional bioactive hydrogels loaded with nano-curcumin for synergistic diabetic wound repair. Int J Biol Macromol 227:1203–1220. https://doi.org/10.1016/j.ijbiomac.2022.11.307

    Article  CAS  Google Scholar 

  193. Xu Z, Liu G, Zheng L, Wu J (2023) A polyphenol-modifed chitosan hybrid hydrogel with enhanced antimicrobial and antioxidant activites for rapid healing of diabetic wounds. Nano Res 16(1):905–916

    Article  CAS  Google Scholar 

  194. Wang F, Zhang W, Li H, Chen X, Feng S, Mei Z (2022) How effective are nano-based dressings in diabetic wound healing? A comprehensive review of literature. Int J Nanomedicine 17:2097–2119. https://doi.org/10.2147/IJN.S361282

    Article  Google Scholar 

  195. Dastani M et al (2022) Three months of combination therapy with nano-curcumin reduces the inflammation and lipoprotein (a) in type 2 diabetic patients with mild to moderate coronary artery disease: evidence of a randomized, double-blinded, placebo-controlled clinical trial. BioFactors 49:108–118. https://doi.org/10.1002/biof.1874

    Article  CAS  Google Scholar 

  196. Hassanizadeh S, Shojaei M, Bagherniya M, Orekhov AN, Sahebkar A (2023) Effect of nano-curcumin on various diseases: a comprehensive review of clinical trials. BioFactors 1–22. https://doi.org/10.1002/biof.1932

  197. Dastani M et al (2023) Three months of combination therapy with nano-curcumin reduces the inflammation and lipoprotein (a) in type 2 diabetic patients with mild to moderate coronary artery disease: evidence of a randomized, double-blinded, placebo-controlled clinical trial. BioFactors 49(1):108–118

    Article  CAS  Google Scholar 

  198. Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42(6):463–478. https://doi.org/10.1016/S0163-7827(03)00033-X

    Article  CAS  Google Scholar 

  199. Singh R et al (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 103(9):3357–3362. https://doi.org/10.1073/pnas.0509009103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote different parts of the paper and have been listed in order of the work they had put in.

Corresponding author

Correspondence to Smriti Sharma.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, K., Sharma, S. Nanomedicine’s transformative impact on anti-diabetic drug discovery: an appraisal. J Nanopart Res 25, 227 (2023). https://doi.org/10.1007/s11051-023-05870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05870-8

Keywords

Navigation