Log in

Amorphous non-doped and Se-, Cu-, and Zn-doped Sb2S3 nanoparticles prepared by a hot-injection method: bandgap tuning and possible observation of the quantum size effect

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Amorphous, non-doped, and copper- and selenium-doped Sb2S3 nanoparticles were synthesized by a hot-injection method. Zinc-doped Sb2S3 nanoparticles were prepared for the first time using the same approach. Electron microscopy revealed that spherical nanoparticles of 1–4 nanometers aggregated into larger spherical clusters. Introducing dopants into the Sb2S3 structure neither influenced the samples’ spherical morphology nor their sizes. The presence of the dopants (Cu, Se, or Zn) was confirmed by energy dispersive X-ray (EDX) and, in the case of Zn, also by inductively coupled plasma-mass spectrometry (ICP-MS). The X-ray powder diffraction (XRPD) patterns of the non-doped and doped samples imply an amorphous structure. Crystalline Zn-doped Sb2S3 revealed defined peaks from only the Sb2S3 phase, indicating successful do**. Diffuse reflectance spectroscopy (DRS) revealed high optical bandgap energies (2.03–2.12 eV) compared to the values (1.6–1.7 eV) for large non-doped and doped particles obtained at 240 °C, which might be attributed to a quantum size effect. X-ray photoelectron spectroscopy (XPS) revealed a phase without any impurities for the undoped and characteristic peaks for copper, selenium, and zinc Auger for the doped samples. XPS valence band confirm for the Zn-doped particles a shift towards lower binding energy compared to the non-doped samples, indicating successful do**. Photoluminescence (PL) measurements show that embedding Zn into the Sb2S3 host lattice suppresses the wide luminescence band related to intrinsic vacancy defects. Narrow peaks at 1.7–2.4 eV were found to be associated with singlet excitons. The energy dependence of the light emission on the synthesized nanoparticles’ size suggests quantum confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kondrotas R, Chen C, Tang J (2018) Sb2S3 solar cells. Joule 2:857–878. https://doi.org/10.1016/j.joule.2018.04.003

    Article  CAS  Google Scholar 

  2. Gur TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 11:2696–2767. https://doi.org/10.1039/C8EE01419A

    Article  Google Scholar 

  3. Hasanuzzaman M, Zubir US, Ilham NI, Seng Che H (2017) Global electricity demand, generation, grid system, and renewable energy polices : a review. WIREs Energy Environ 6:e222. https://doi.org/10.1002/wene.222

    Article  Google Scholar 

  4. Hosenuzzaman M, Rahim NA, Selvaraj J, Hasanuzzaman M, Malek ABMA, Nahar A (2015) Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew Sust Energ Rev 41:284–297. https://doi.org/10.1016/j.rser.2014.08.046

    Article  Google Scholar 

  5. Yalew SG, van Vliet MTH, Gernaat DEHJ, Ludwig F, Miara A, Park C, Byers E, De Cian E, Piontek F, Iyer G, Mouratiadou I, Glynn J, Hejazi M, Dessens O, Rochedo P, Pietzcker R, Schaeffer R, Fujimori S, Dasgupta S et al (2020) Impacts of climate change on energy systems in global and regional scenarios. Nat Energy 5:794–802. https://doi.org/10.1038/s41560-020-0664-z

    Article  Google Scholar 

  6. Welch AW, Baranowski LL, Peng H, Hempel H, Eichberger R, Unold T, Lany S, Wolden C, Zakutayev A (2017) Trade-offs in thin film solar cells with layered chalcostibite photovoltaic absorbers. Adv Energy Mater 7:1601935. https://doi.org/10.1002/aenm.201601935

    Article  CAS  Google Scholar 

  7. Sinsermsuksakul P, Sun L, Lee SW, Park HH, Kim SB, Yang C, Gordon RG (2014) Overcoming efficiency limitations of SnS-based solar cells. Adv Energy Mater 4:1400496. https://doi.org/10.1002/aenm.201400496

    Article  CAS  Google Scholar 

  8. Steinmann V, Brandt RE, Buonassisi T (2015) Non-cubic solar cell materials. Nat Photonics 9:355–357. https://doi.org/10.1038/nphoton.2015.85

    Article  CAS  Google Scholar 

  9. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8:506–514. https://doi.org/10.1038/nphoton.2014.134

    Article  CAS  Google Scholar 

  10. Kaltenbrunner M, White MS, Głowacki ED, Sekitani T, Someya T, Sariciftci NS, Bauer S (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 3:770. https://doi.org/10.1038/ncomms1772

    Article  CAS  Google Scholar 

  11. Vermang B, Watjen JT, Fjallstrom V, Rostvall F, Edoff M, Kotipalli R, Henry F, Flandre D (2014) Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells. Prog Photovolt Res Appl 22:1023–1029. https://doi.org/10.1002/pip.2527

    Article  CAS  Google Scholar 

  12. Paudel NR, Wieland KA, Compaan AD (2012) Ultrathin CdS/CdTe solar cells by sputtering. Sol Energy Mater Sol Cells 105:109–112. https://doi.org/10.1016/j.solmat.2012.05.035

    Article  CAS  Google Scholar 

  13. Vermang B, Goverde H, Tous L, Lorenz A, Choulat P, Horzel J, Joachim J, Poortmans J, Mertens R (2012) Approach for Al2O3 rear surface passivation of industrial p-type Si PERC above 19%. Prog Photovolt Res Appl 20:269–273. https://doi.org/10.1002/pip.2196

    Article  CAS  Google Scholar 

  14. Aousgi F, Kanzari M (2011) Study of the optical properties of Sn-doped Sb2S3 thin films. Energy Procedia 10:313–322. https://doi.org/10.1016/j.egypro.2011.10.197

    Article  CAS  Google Scholar 

  15. Rhee JH, Chung CC, Diau EWG (2013) A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites. NPG Asia Mater 5:e68. https://doi.org/10.1038/am.2013.53

    Article  CAS  Google Scholar 

  16. Yang RX, Butler KT, Walsh A (2015) Assessment of hybrid organic–inorganic antimony sulfides for earth-abundant photovoltaic applications. J Phys Chem Lett 6:5009–5014. https://doi.org/10.1021/acs.jpclett.5b02555

    Article  CAS  Google Scholar 

  17. Wang X, Tang R, Wu C, Zhu C, Chen T (2018) Development of antimony sulfide–selenide Sb2(S, Se)3-based solar cells. J Energy Chem 27:713–721. https://doi.org/10.1016/j.jechem.2017.09.031

    Article  Google Scholar 

  18. Joschko M, Wafo FYF, Malsi C, Kisić D, Validžić I, Graf C (2021) Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles. Beilstein J Nanotechnol 12:1021–1033. https://doi.org/10.3762/bjnano.12.76

    Article  CAS  Google Scholar 

  19. Lojpur V, Joschko M, Graf C, Radmilović N, Novaković M, Validžić I (2022) Structural, morphological, optical, and electronic properties of amorphous non-doped and I and Sn doped Sb2S3 nanoparticles. Mater Sci Semicond Process 137:106196. https://doi.org/10.1016/j.mssp.2021.106196

    Article  CAS  Google Scholar 

  20. Janosević V, Mitrić M, Bundaleski N, Rakočević Z, Validžić ILJ (2016) High-efficiency Sb2S3-based hybrid solar cell at low light intensity: cell made of synthesized Cu and Se-doped Sb2S3. Prog Photovoltaics Res Appl 24:704–715. https://doi.org/10.1002/pip.2724

    Article  CAS  Google Scholar 

  21. Lojpur V, Krstić J, Kačarević-Popović Z, Filipović N, Validžić ILJ (2018) Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity. Environ Chem Lett 16:659–664

    Article  CAS  Google Scholar 

  22. Validžić ILJ, Popović M, Lojpur V, Bundaleski N, Rakočević Z (2018) Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity. J Electron Mater 47:2402. https://doi.org/10.1007/s10311-017-0702-7

    Article  CAS  Google Scholar 

  23. Lojpur V, Mitrić M, Validžić ILJ (2018) The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. Opt Laser Technol 101:425–432. https://doi.org/10.1016/j.optlastec.2017.11.045

    Article  CAS  Google Scholar 

  24. Lojpur V, Krstić J, Kačarević-Popović Z, Mitrić M, Rakočević Z, Validžić ILJ (2018) Efficient and novel Sb2S3 based solar cells with chitosan/poly(ethylene glycol)/electrolyte blend. Int J Energy Res 42:843–852. https://doi.org/10.1002/er.3899

    Article  CAS  Google Scholar 

  25. Lojpur V, Tasić N, Validžić I (2017) Different behaviors in current–voltage measurements of undoped and doped Sb2S3-based solar cells. J Appl Electrochem 47:117–124. https://doi.org/10.1007/s10800-016-1025-2

    Article  CAS  Google Scholar 

  26. Janošević V, Mitrić M, Savić J, Validžić ILj (2016) Structural, optical, and electrical properties of applied amorphized and polycrystalline Sb2S3 thin films. Metall Mater Trans A: Phys Metall Mater Sci 47: 1460-1468. https://doi.org/10.1007/s11661-015-3282-9

  27. Lojpur V, Mitrić M, Kačarević-Popović Z, Radosavljević A, Rakočević Z, Validžić ILJ (2017) The role of low light intensity: A cheap, stable, and solidly efficient amorphous Sb2S3 powder/hypericin composite/PVA matrix loaded with electrolyte solar cell. Environ Prog Sustain Energy 36:1507–1516. https://doi.org/10.1002/ep.12597

    Article  CAS  Google Scholar 

  28. Tang R, Wang X, Jiang C, Li S, Liu W, Ju H, Yang S, Zhu C, Chen T (2018) n-type do** of Sb2S3 light-harvesting films enabling high-efficiency planar heterojunction solar cells. ACS Appl Mater Interfaces 10:30314–30321. https://doi.org/10.1021/acsami.8b08965

    Article  CAS  Google Scholar 

  29. Diliegros-Godines CJ, Santos Cruz J, Mathews NR, Pal M (2018) Effect of Ag do** on structural, optical and electrical properties of antimony sulfide thin films. J Mater Sci 53:11562–11573. https://doi.org/10.1007/s10853-018-2420-3

    Article  CAS  Google Scholar 

  30. Ito S, Tsujimoto K, Nguyen DC, Manabe K, Nishino H (2013) Do** effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency. Int J Hydrog Energy 38:16749–16754. https://doi.org/10.1016/j.ijhydene.2013.02.069

    Article  CAS  Google Scholar 

  31. Ömer SN, Horoz SS (2019) Fabrication of pure Sb2S3 and Fe (2.5%): Sb2S3 thin films and investigation their properties. J Inorg Organomet Polym Mater 29:1331–1336. https://doi.org/10.1007/s10904-019-01097-0

    Article  CAS  Google Scholar 

  32. Validžić ILJ, Janošević V, Mitrić M (2016) Characterization and current–voltage characteristics of solar cells based on the composite of synthesized Sb2S3 powder with small band gap and natural dye. Environ Prog Sustain Energy 35:512–516. https://doi.org/10.1002/ep.12221

    Article  CAS  Google Scholar 

  33. Janosevic V, Mitric M, Lezaic AJ, Validžić ILJ (2016) Weak light performance of synthesized amorphous Sb2S3-based hybrid solar cell. IEEE J Photovolt 6:473–479. https://doi.org/10.1109/JPHOTOV.2015.2501731

    Article  Google Scholar 

  34. Peng Y, **a C, Tan Z, Ana J, Zhang Q (2019) Size-controlled excitonic effects on electronic and optical properties of Sb2S3 nanowires. Phys Chem Chem Phys 21:26515–26524. https://doi.org/10.1039/C9CP05134A

    Article  CAS  Google Scholar 

  35. Myagmarsereejid P, Ingram M, Batmunkh M, Zhong YL (2021) Do** strategies in Sb2S3 thin films for solar cells. Small 17:2100241. https://doi.org/10.1002/smll.202100241

    Article  CAS  Google Scholar 

  36. Kalangestani FC, Ghodsi FE, Bazhan Z (2020) Investigating the effect of Zn do** on physical properties of nanostructured Sb2S3 thin films by dip-coating technique. Appl Phys A 126:548. https://doi.org/10.1007/s00339-020-03734-9

    Article  CAS  Google Scholar 

  37. Mathew NJ, Oommen R, Rajalakshmi PU, Rajalakshmi PU, Chinnappanadar S (2011) Investigations of the Se doped Sb2S3 thin films. Chalcogenide Lett 8:441–446 https://chalcogen.ro/441_Mathew.pdf

    CAS  Google Scholar 

  38. Lei H, Lin T, Wang X, Dai P, Guo Y, Gao Y, Hou D, Chen J, Tan Z (2019) Copper do** of Sb2S3: fabrication, properties, and photovoltaic application. J Mater Sci: Mater Electron 30:21106–21116. https://doi.org/10.1007/s10854-019-02481-9

    Article  CAS  Google Scholar 

  39. Chen C, Tang J (2020) Open-circuit voltage loss of antimony chalcogenide solar cells: status, origin, and possible solutions. ACS Energy Lett 5:2294–2304. https://doi.org/10.1021/acsenergylett.0c00940

    Article  CAS  Google Scholar 

  40. Wang W, Strössner F, Zimmermann E, Schmidt-Mende L (2017) Hybrid solar cells from Sb2S3 nanoparticle ink. Sol Energy Mater Sol Cells 172:335–340. https://doi.org/10.1016/j.solmat.2017.07.046

    Article  CAS  Google Scholar 

  41. Abulikemu M, Del Gobbo S, Anjum DH, Malik MA, Bakr OM (2016) Colloidal Sb2S3 nanocrystals: synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells. J Mater Chem A 4(18):6809–6814. https://doi.org/10.1039/C5TA09546H

    Article  CAS  Google Scholar 

  42. Swift P (1982) Adventitious carbon—the panacea for energy referencing? Surf Interface Anal 4:47–51. https://doi.org/10.1002/sia.740040204

    Article  CAS  Google Scholar 

  43. Fairley N, Carrick A (2005) The Casa Cookbook—Part I: Recipes for XPS data processing. Knutsford: Acolyte Science, Publisher Acolyte Science 10:0954953304

    Google Scholar 

  44. Zhou W, Greer HF (2016) What can electron microscopy tell us beyond crystal structures? Eur J Inorg Chem 2016:941–950. https://doi.org/10.1002/ejic.201501342

    Article  CAS  Google Scholar 

  45. Kostiantyn Kravchyk V, Maksym Kovalenko V, Maryna Bodnarchuk I (2020) Colloidal antimony sulfide nanoparticles as a high-performance anode material for Li-ion and Na-ion batteries. Sci. Rep. 10:2554. https://doi.org/10.1038/s41598-020-59512-3

    Article  CAS  Google Scholar 

  46. Mourdikoudis S, Pallaresa RM, Thanh NTK (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10:12871–12934. https://doi.org/10.1039/C8NR02278J

    Article  CAS  Google Scholar 

  47. Sampath S, Isdebski T, Jenkins JE, Ayon JV, Henning RW, JPRO O, Antipoa O, Yarger JL (2012) X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks. Soft Matter 8:6713–6722. https://doi.org/10.1039/C2SM25373A

    Article  CAS  Google Scholar 

  48. Fritsch C, Hansen AL, Indris S, Knapp M, Ehrenberg H (2020) Mechanochemical synthesis of amorphous and crystalline Na2P2S6 – elucidation of local structural changes by X-ray total scattering and NMR. Dalton Trans 49:1668–1673. https://doi.org/10.1039/C9DT04777H

    Article  CAS  Google Scholar 

  49. Davis EA, Mott NF (1970) Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag 22:903–922. https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  50. Makuła P, Pacia M, Macyk W (2018) How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J Phys Chem Lett 9:6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  Google Scholar 

  51. Grobelny J, DelRio FW, Pradeep N, Kim DI, Hackley VA, Cook RF (2011) Size measurement of nanoparticles using atomic force microscopy. Methods Mol Biol 697:71–82. https://doi.org/10.1007/978-1-60327-198-1_7

    Article  CAS  Google Scholar 

  52. Abdullahi SS, Güner S, Koseoglu Y, Musa IM, Adamu BI, Abdulhamid MI (2016) Sımple method for the determınatıon of band gap of a nanopowdered sample usıng Kubelka Munk theory. J Nigerian Assoc Math Phys 35:241–246 https://www.researchgate.net/publication/305810656

    Google Scholar 

  53. Zanatta AR (2019) Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination. Sci Rep 9:11225. https://doi.org/10.1038/s41598-019-47670-y

    Article  CAS  Google Scholar 

  54. Validžić ILJ, Mitric M, Abazovic ND, Jokic BM, Milosevic AS, Popovic ZS, Vukajlovic FR (2014) Structural analysis, electronic and optical properties of the synthesized Sb2S3 nanowires with small band gap. Semicond Sci Technol 29:035007. https://doi.org/10.1088/0268-1242/29/3/035007

    Article  CAS  Google Scholar 

  55. Roberts M, Dunstan DJ (1985) A theory of band-gap fluctuations in amorphous semiconductors. J Phys C Solid State Phys 18:5429. https://doi.org/10.1088/0022-3719/18/28/012

    Article  CAS  Google Scholar 

  56. Lee BH, Cho KS, Lee DY, Sohn A, Lee JY, Choo H, Park S, Kim SW, Kim S, Lee SY (2019) Investigation on energy bandgap states of amorphous SiZnSnO thin films. Scientific Reports 9:19246. https://doi.org/10.1038/s41598-019-55807-2

    Article  CAS  Google Scholar 

  57. Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200. https://doi.org/10.1021/ar9001069

    Article  CAS  Google Scholar 

  58. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630. https://doi.org/10.1021/cr400544s

    Article  CAS  Google Scholar 

  59. Liu Y, Miao HY, Tan GQ, Zhu GQ (2010) Hydrothermal synthesis ultralong single-crystal Sb2S3 nanowires. J Wuhan Univ Technol Mater Sci Ed 25:411–414. https://doi.org/10.1007/s11595-010-0013-3

    Article  CAS  Google Scholar 

  60. Hu HM, Mo MS, Yan BJ, Zhang XJ, Li QW, Yu WC, Qian YT (2003) Solvothermal synthesis of Sb2S3 nanowires on a large scale. J Cryst Growth 258:106–112. https://doi.org/10.1016/S0022-0248(03)01494-5

    Article  CAS  Google Scholar 

  61. Mane RS, Lokhande CD (2003) Thickness-dependent properties of chemically deposited Sb2S3 thin films. Mater Chem Phys 82:347–354. https://doi.org/10.1016/S0254-0584(03)00271-2

    Article  CAS  Google Scholar 

  62. Vinayakumar V, Shaji S, Avellaneda D, Aguilar-Martınez JA, Krishnan B (2018) Copper antimony sulfide thin films for visible to near infrared photodetector applications. RSC Adv 8:31055–31065. https://doi.org/10.1039/C8RA05662E

    Article  CAS  Google Scholar 

  63. Megahid NM, Wakkad MM, Shokr EK, Abass NM (2004) Microstructure and electrical conductivity of In-doped CdS thin films. Phys B Condens Matter 353:150–163. https://doi.org/10.1016/j.physb.2004.08.013

    Article  CAS  Google Scholar 

  64. Crist BV (2000) Handbook of Monochromatic XPS Spectra: The Elements of Native Oxides. John Wiley & Sons LTD, NY, USA, p 548

    Google Scholar 

  65. Iacomi F, Purica M, Budianu E, Prepelita P, Macovei D (2007) Structural studies on some doped CdS thin films deposited by thermal evaporation. Thin Solid Films 515:6080–6084. https://doi.org/10.1016/j.tsf.2006.12.091

    Article  CAS  Google Scholar 

  66. Sheng-** G, Chen-**ng L, Yang C, Ze M, Guo XH (2016) Novel 3-D network SeSx/NCPAN composites prepared by one-pot in-situ solid-state method and its electrochemical performance as cathode material for lithium-ion battery. J Alloys Compd 664:92–98. https://doi.org/10.1016/j.jallcom.2015.12.208

    Article  CAS  Google Scholar 

  67. Suk HD, Bill B, Ahmed AW (2013) XPS analysis of sorption of selenium (IV) and selenium (VI) to mackinawite (FeS). Environ. Prog. Sustain. Energy 32:84–93. https://doi.org/10.1002/ep.10609

    Article  CAS  Google Scholar 

  68. Vincent Crist B (1999) Handbooks of Monochromatic XPS Spectra. Wiley, Hoboken

    Google Scholar 

  69. Thermo Scientific XPS: Knowledge Base, 2013–2021, accessed 2021-12-23, https://www.thermofisher.com/ru/ru/home/materials-science/learning-center/periodic-table.html

  70. Dou Y, Fishlock T, Egdell RG (1997) Band-gap shrinkage in n-type-doped CdO probed by photoemission spectroscopy. Physical Review B 55:R13381. https://doi.org/10.1103/PhysRevB.55.R13381

    Article  CAS  Google Scholar 

  71. Gee CM, Kastner M (1980) Defects in lone-pair semiconductors: The valence-alternation model and new directions. J. Non-Cryst Solids 35-36:807–817. https://doi.org/10.1016/0022-3093(80)90300-2

    Article  Google Scholar 

  72. Yonezawa F (1980) Fundamental Physics of Amorphous Semiconductors, Proceedings of the Kyoto Summer Institute, Kyoto, Japan. Springer, Berlin

    Google Scholar 

  73. Alemi A, Woo Joo S, Hanifehpour Y, Khandar A, Morsali A, Min BK (2011) Hydrothermal synthesis of Sb2S3 nanorods using iodine via redox mechanism. J Nanomater 2011:186528. https://doi.org/10.1155/2011/186528

    Article  CAS  Google Scholar 

  74. Beril SI, Stamov IG, Tiron AV, Zalamai VV, Syrbu NN (2020) Frenkel excitons and band structure in Sb2S3 single crystals. Opt Mater 101:109737. https://doi.org/10.1016/j.optmat.2020.109737

    Article  CAS  Google Scholar 

  75. Narayan Banerjee A, Woo Joo S, Bong KM (2012) Quantum size effect in the photoluminescence properties of p-type semiconducting transparent CuAlO2 nanoparticles for solar energy applications. J Appl Phys 112:114329. https://doi.org/10.1063/1.4768933

    Article  CAS  Google Scholar 

  76. Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873. https://doi.org/10.1021/cr900289f

    Article  CAS  Google Scholar 

  77. Yousefi R, Cheragizade M, Farid JS, Mahmoudian MR, Abdolhossein S, Huang NM (2014) Influences of anionic and cationic dopants on the morphology and optical properties of PbS nanostructures. Chin Phys B 23:108101. https://doi.org/10.1088/1674-1056/23/10/108101

    Article  CAS  Google Scholar 

Download references

Funding

The research was funded by the Ministry of Science,Technological Development and Innovation of the Republic of Serbia. Yu. K. and D. Z. are grateful to the Ministry of Education and Science of Russian Federation (project no. FEUZ-2023-0014) for support. This work was also funded by the German Academic Exchange Service (DAAD) within the PPP Serbia program (grant 57447826). The work of M. J. was supported by a fellowship of the Platform for Ph. D. students of the Technical University of Darmstadt and the Darmstadt University of Applied Sciences. We thank Stefanie Schmidt from the Technical University of Darmstadt for the ICP-MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Validžić.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Validžić, I., Popović, M., Potočnik, J. et al. Amorphous non-doped and Se-, Cu-, and Zn-doped Sb2S3 nanoparticles prepared by a hot-injection method: bandgap tuning and possible observation of the quantum size effect. J Nanopart Res 25, 48 (2023). https://doi.org/10.1007/s11051-023-05695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05695-5

Keywords

Navigation