Log in

Structural, electronic, and elastic properties of different polytypes of GaSe lamellar materials under compressive stress: insights from a DFT study

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The objective of this research is to look at how anisotropic mechanical stresses affect the structural, elastic, and electronic properties of various GaSe polytypes. Density functional theory (DFT) was employed in all calculations. Consistent and precise calculations as well as descriptions of trade-off and correlation effects were performed using the LDA-PBE approximation. The uni-axial compressive stresses in the GaSe layer planes, in addition to the perpendicularly applied uni-axial compressive stress, are taken into account (along the c-axis). The gap distance and the \(\widehat{Ga Ga Se}\) bond angle, both of which determine the thickness of crystal layers and the size of the unit cell in the basal plane, have the largest influence on changes in the lattice parameters a and c. Compression along the c-axis causes the interlayer spacing to shrink and the crystal anisotropy to decrease, whereas compression in the layer planes has no effect on gallium selenide’s property. The stability conditions reflect that the different polytypes of GaSe are mechanically stable at zero pressure and under pressure. Our results at zero pressure show that the B/G ratio is of order of 1.33, 1.44, 1.67, and 1.44 for ε-GaSe, β-GaSe, γ-GaSe, and δ-GaSe, respectively, which means that all polytypes GaSe crystal are fragile. The calculated band structure shows that the structure semiconductors ε-GaSe, β-GaSe, and δ-GaSe have a direct band gap of 0.751 eV, 0.818 eV, and 0.888 eV respectively and an indirect band gap of 0.819 eV for γ- GaSe. At bi-axial strains up to 8 GPa, calculations of the electronic band structure demonstrate a progressive growth in the band gap. Inter-band transition energy appears to be decreasing with loading under uni-axial compressive stress along the c-axis. A transition to the metallic type of conductivity may occur when the projected pressure dependences of the direct and indirect band gaps are taken into account at uni-axial pressures of roughly 10 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bassou A, Rajira A, El Kanouny A et al (2020) Optical properties of GaSe, characterization and simulation. Mater Today: Proc 37:3789–3792. https://doi.org/10.1016/j.matpr.2020.07.622

    Article  CAS  Google Scholar 

  2. Van Lare C, Yin G, Polman A, Schmid M (2015) Light coupling and trap** in ultrathin Cu(In, Ga)Se2 solar cells using dielectric scattering patterns. ACS Nano 9:9603–9613. https://doi.org/10.1021/acsnano.5b04091

    Article  CAS  Google Scholar 

  3. Movla H (2014) Optimization of the CIGS based thin film solar cells: numerical simulation and analysis. Optik 125:67–70. https://doi.org/10.1016/j.ijleo.2013.06.034

    Article  CAS  Google Scholar 

  4. Mostefaoui M, Mazari H, Khelifi S et al (2015) Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia 74:736–744. https://doi.org/10.1016/j.egypro.2015.07.809

    Article  CAS  Google Scholar 

  5. Al-Hattab M, Moudou L, Khenfouch M et al (2021) Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software. Sol Energy 227:13–22. https://doi.org/10.1016/j.solener.2021.08.084

    Article  CAS  Google Scholar 

  6. Eckhoff WC, Putnam RS, Wang S et al (1996) A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace-gas detection. Appl Phys B: Lasers Opt 63:437–441. https://doi.org/10.1007/s003400050106

    Article  CAS  Google Scholar 

  7. Ku SA, Chu W-C, Luo CW et al (2012) Optimal Te-do** in GaSe for non-linear applications. Opt Express 20:5029. https://doi.org/10.1364/oe.20.005029

    Article  CAS  Google Scholar 

  8. Kyazym-Zade AG, Agaeva AA, Salmanov VM, Mokhtari AG (2007) Optical detectors on GaSe and InSe layered crystals. Tech Phys 52:1611–1613. https://doi.org/10.1134/S1063784207120146

    Article  CAS  Google Scholar 

  9. Castellano A (1986) GaSe detectors for x-ray beams. Appl Phys Lett 48:298–299. https://doi.org/10.1063/1.96586

    Article  CAS  Google Scholar 

  10. Liu K, Xu J, Zhang XC (2004) GaSe crystals for broadband terahertz wave detection. Appl Phys Lett 85:863–865. https://doi.org/10.1063/1.1779959

    Article  CAS  Google Scholar 

  11. Chen C-W, Tang T-T, Lin S-H et al (2009) Optical properties and potential applications of ɛ-GaSe at terahertz frequencies. J Opt Soc Am B 26:A58. https://doi.org/10.1364/josab.26.000a58

    Article  CAS  Google Scholar 

  12. Seyhan A, Karabulut O, Akmoǧlu BG et al (2005) Optical anisotropy in GaSe. Cryst Res Technol 40:893–895. https://doi.org/10.1002/crat.200410452

    Article  CAS  Google Scholar 

  13. Allakhverdiev KR, Yetis MÖ, Özbek S et al (2009) Effective nonlinear GaSe crystal. Optical properties and applications Laser Physics 19:1092–1104. https://doi.org/10.1134/s1054660x09050375

    Article  CAS  Google Scholar 

  14. Forney JJ, Maschke K, Mooser E (1977) Influence of stacking disorder on Wannier excitons in layered semiconductors. J Phys C: Solid State Phys 10:1887–1894. https://doi.org/10.1088/0022-3719/10/11/023

    Article  CAS  Google Scholar 

  15. Lim SY, Lee JU, Kim JH et al (2020) Polytypism in few-layer gallium selenide. Nanoscale 12:8563–8573. https://doi.org/10.1039/d0nr00165a

    Article  CAS  Google Scholar 

  16. Allakhverdiev K, Baykara T, Ellialtioǧlu Ş et al (2006) Lattice vibrations of pure and doped GaSe. Mater Res Bull 41:751–763. https://doi.org/10.1016/j.materresbull.2005.10.015

    Article  CAS  Google Scholar 

  17. Al-Hattab M, Moudou L, Chrafih Y et al (2020) The anisotropic optical properties of different polytypes ( ε, β, δ, γ ) of GaSe lamellar materials. Eur Phys J Appl Phys 91:30102. https://doi.org/10.1051/epjap/2020200136

    Article  CAS  Google Scholar 

  18. Kuhn A, Chevy A, Chevalier R (1975) Crystal structure and interatomic distances in GaSe. Physica Status Solidi (a) 31:469–475. https://doi.org/10.1002/pssa.2210310216

    Article  CAS  Google Scholar 

  19. Segall MD, Lindan PJD, Probert MJ et al (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys: Condens Matter 14:2717–2744. https://doi.org/10.1088/0953-8984/14/11/301

    Article  CAS  Google Scholar 

  20. Perdew JP, Wang Y (2018) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 98:244–249. https://doi.org/10.1103/PhysRevB.98.079904

    Article  Google Scholar 

  21. Camara MOD, Mauger A, Devos I (2002) Electronic structure of the layer compounds GaSe and InSe in a tight-binding approach. Phys Rev B - Condens Matter Mater Phys 65:1–12. https://doi.org/10.1103/PhysRevB.65.125206

    Article  CAS  Google Scholar 

  22. De Blasi C, Manno D, Rizzo A (1989) Convergent-beam electron diffraction study of melt-and vapour-grown single crystals of gallium chalcogenides. Il Nuovo Cimento D 11:1145–1163. https://doi.org/10.1007/BF02459022

    Article  Google Scholar 

  23. Ghalouci L, Benbahi B, Hiadsi S et al (2013) First principle investigation into hexagonal and cubic structures of gallium selenide. Comput Mater Sci 67:73–82. https://doi.org/10.1016/j.commatsci.2012.08.034

    Article  CAS  Google Scholar 

  24. Cenzual K, Gelato LM, Penzo M, Parthé E (1991) Inorganic structure types with revised space groups. I Acta Crystallographica Section B 47:433–439. https://doi.org/10.1107/S0108768191000903

    Article  Google Scholar 

  25. Kaminskii VM, Kovalyuk ZD, Pyrlya MN et al (2005) Properties of hydrogenated GaSe crystals. Inorg Mater 41:793–795. https://doi.org/10.1007/s10789-005-0212-z

    Article  CAS  Google Scholar 

  26. Adler C, Honke R, Pavone P, Schröder U (1998) First-principles investigation of the lattice dynamics of e-GaSe. Phys Rev B - Condens Matter Mater Phys 57:3726–3728. https://doi.org/10.1103/PhysRevB.57.3726

    Article  CAS  Google Scholar 

  27. Srour J, Badawi M, El Haj Hassan F, Postnikov AV (2016) Crystal structure and energy bands of (Ga/In)Se and Cu(In,Ga)Se2 semiconductors in comparison. Physica Status Solidi (B) Basic Res 253:1472–1475. https://doi.org/10.1002/pssb.201552776

    Article  CAS  Google Scholar 

  28. Jeliinek F, Hahn H (1961) Zur polytypie des galliummonoselenids, gase. Zeitschrift fur Naturforschung - Section B J Chem Sci 16:713–715. https://doi.org/10.1515/znb-1961-1102

    Article  Google Scholar 

  29. Benazeth S, Dung NH, Guittard M, Laruelle P (1988) Affinement sur monocristal de la structure du polytype 2H du séléniure de gallium GaSe forme β. Acta Crystallogr C 44:234–236. https://doi.org/10.1107/s0108270187010102

    Article  Google Scholar 

  30. Srour JY (2016) Electronic structure and competition of phases in Cu- ( In , Ga ) -Se , Ga-Se and In-Se semiconductors : first-principles calculations based on different exchange-correlation potentials. Doctoral thesis University of Lorraine

  31. Bassani F, Parravicini GP (1967) Band structure and optical properties of graphite and of the layer compounds GaS and GaSe. Il Nuovo Cimento B Series 10(50):95–128. https://doi.org/10.1007/BF02710685

    Article  Google Scholar 

  32. Kosobutsky AV, Sarkisov SY, Brudnyi VN (2013) Structural, elastic and electronic properties of GaSe under biaxial and uniaxial compressive stress. J Phys Chem Solids 74:1240–1248. https://doi.org/10.1016/j.jpcs.2013.03.025

    Article  CAS  Google Scholar 

  33. Robertson J (1979) Electronic structure of GaSe, GaS, InSe and GaTe. J Phys C: Solid State Phys 12:4777–4789. https://doi.org/10.1088/0022-3719/12/22/019

    Article  CAS  Google Scholar 

  34. Depeursinge Y (1981) Electronic properties of the layer III-VI semiconductors. A comparative study. Il Nuovo Cimento B Series 11 64:111–150. https://doi.org/10.1007/BF02721299

  35. Nagel S, Baldereschi A, Maschke K (1979) Tight-binding study of the electronic states in GaSe polytypes. J Phys C: Solid State Phys 12:1625–1639. https://doi.org/10.1088/0022-3719/12/9/006

    Article  CAS  Google Scholar 

  36. Schwarz U, Olguin D, Cantarero A et al (2007) Effect of pressure on the structural properties and electronic band structure of GaSe. Physica Status Solidi (B) Basic Res 244:244–255. https://doi.org/10.1002/pssb.200672551

    Article  CAS  Google Scholar 

  37. Rak Z, Mahanti SD, Mandal KC, Fernelius NC (2009) Electronic structure of substitutional defects and vacancies in GaSe. J Phys Chem Solids 70:344–355. https://doi.org/10.1016/j.jpcs.2008.10.022

    Article  CAS  Google Scholar 

  38. Aulich E, Brebner JL, Mooser E (1969) Indirect energy gap in GaSe and GaS. Physica Status Solidi (B) 31:129–131. https://doi.org/10.1002/pssb.19690310115

    Article  CAS  Google Scholar 

  39. McCanny JV, Murray RB (1977) The band structures of gallium and indium selenide. J Phys C: Solid State Phys 10:1211–1222. https://doi.org/10.1088/0022-3719/10/8/022

    Article  CAS  Google Scholar 

  40. Wu ZJ, Zhao EJ, **ang HP et al (2007) Crystal structures and elastic properties of superhard Ir N2 and Ir N3 from first principles. Phys Rev B - Condens Matter Mater Phys 76:1–15. https://doi.org/10.1103/PhysRevB.76.054115

    Article  CAS  Google Scholar 

  41. Nyawere PWO, Makau NW, Amolo GO (2014) First-principles calculations of the elastic constants of the cubic, orthorhombic and hexagonal phases of BaF2. Physica B 434:122–128. https://doi.org/10.1016/j.physb.2013.10.051

    Article  CAS  Google Scholar 

  42. Balyts’kyi OO (2003) Degradation and fracture of crystals of gallium and indium selenides. Mater Sci 39:561–565. https://doi.org/10.1023/B:MASC.0000010935.25675.e8

    Article  Google Scholar 

  43. Zhang SR, Zhu SF, Zhao BJ et al (2014) First-principles study of the elastic, electronic and optical properties of ε-GaSe layered semiconductor. Physica B 436:188–192. https://doi.org/10.1016/j.physb.2013.12.014

    Article  CAS  Google Scholar 

  44. Rak Z, Mahanti SD, Mandal KC, Fernelius NC (2010) Do** dependence of electronic and mechanical properties of GaSe 1-xTex and Ga1-xInxSe from first principles. Phys Rev B - Condens Matter Mater Phys 82:1–10. https://doi.org/10.1103/PhysRevB.82.155203

    Article  CAS  Google Scholar 

  45. Chiang TC, Dumas J, Shen YR (1978) Brillouin scattering in the layer compound GaSe. Solid State Commun 28:173–176. https://doi.org/10.1016/0038-1098(78)90049-2

    Article  CAS  Google Scholar 

  46. Yasuaki H, Masayoshi Y, YamamotoAbe KK (1983) Elastic constants of GaS and GaSe layered crystals determined by Brillouin scattering. J Phys Soc Jpn 52:2777–2783

    Article  Google Scholar 

  47. Cui S, Feng W, Hu H et al (2011) Effect of high hydrostatic pressure on structural stability of Ti 3GeC2: a first-principles investigation. J Solid State Chem 184:786–789. https://doi.org/10.1016/j.jssc.2011.02.007

    Article  CAS  Google Scholar 

  48. Goldstein RV, Gorodtsov VA, Lisovenko DS (2016) The elastic properties of hexagonal auxetics under pressure. Physica Status Solidi (B) Basic Res 253:1261–1269. https://doi.org/10.1002/pssb.201600054

    Article  CAS  Google Scholar 

  49. Zeng X, Peng R, Yu Y, et al (2018) Pressure effect on elastic constants and related properties of Ti3Al intermetallic compound: a first-principles study. Materials 11:.https://doi.org/10.3390/ma11102015https://doi.org/10.3390/ma11102015

  50. Sin’ko GV, Smirnov NA (2002) Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. J Phys: Condens Matter 14:6989–7005. https://doi.org/10.1088/0953-8984/14/29/301

    Article  Google Scholar 

  51. Chen C, Liu L, Wen Y et al (2019) Elastic properties of orthorhombic YBa2Cu3O7 under pressure. Curr Comput-Aided Drug Des 9:1–12. https://doi.org/10.3390/cryst9100497

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank all that contributed to this scientific work and particularly Sultan Moulay Slimane University and UNISA University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Al-Hattab.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hattab, M., Moudou, L., Khenfouch, M. et al. Structural, electronic, and elastic properties of different polytypes of GaSe lamellar materials under compressive stress: insights from a DFT study. J Nanopart Res 24, 219 (2022). https://doi.org/10.1007/s11051-022-05595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05595-0

Keywords

Navigation