Log in

Rietveld refinement, luminescence and catalytic study of as-synthesized and Dy3+-doped cubic Y2O3 nanopowder prepared by citrate mediated sol–gel technique

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This paper reports on synthesis of undoped and Dy3+-doped cubic Y2O3 nanopowder via a neoteric and conducive citrate sol–gel technique. The size and morphology of prepared nanocrystallites are explored using XRD, TG-DSC, FTIR, FESEM, and HRTEM. Rietveld refinement is employed to affirm the preparation of as-synthesized Y2O3 nanocrystallites with cubic phase. The optical behavior of as-synthesized Y2O3, Dy3+-doped Y2O3 samples are studied in terms of absorbance, PL, and CIE coordinates. It is revealed that position of absorption peak is shifted towards higher wavelength side when Dy3+ ions are introduced in Y2O3 and further on annealing. In PL spectra, prominent emission is achieved in blue region at 485 and 369 nm under direct and indirect excitation wavelengths. Catalytic performance of the samples is also examined to de-colorize cotton blue dye. Annealing for a long time generated defect states which are helpful to accelerate the photocatalytic efficiency of the prepared nanopowder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wnag X, Hu Y, Meng X, Li Y, Zhu M, ** H (2015) Synthesis of Y2O3 phosphor by a hydrolysis and oxidation method. J Rare Earths 33:706–711. https://doi.org/10.1016/S1002-0721(14)60474-9

    Article  CAS  Google Scholar 

  2. Lin CC, Liu RS (2011) Advances in phosphors for light-emitting diodes. J Phys Chem Lett 2:1268–1277. https://doi.org/10.1021/jz2002452

    Article  CAS  Google Scholar 

  3. Goswami B, Rani N, Ahlawat R (2018) Structural and optical investigations of Nd3+ doped Y2O3-SiO2 nanopowder. J Alloy Compd 730:450–457. https://doi.org/10.1016/j.jallcom.2017.09.269

    Article  CAS  Google Scholar 

  4. Wang X, Wang Y, Marques-Hueso J, Yan X (2017) Improving optical temperature sensing performance of Er3+ doped Y2O3 Microtubes via co-do** and controlling excitation power. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-00838-w

    Article  CAS  Google Scholar 

  5. Ahlawat R (2015) Influence of multi-step annealing on nanostructure and surface morphology of Y2O3:SiO2 powder. Ceram Int 41:7345–7351. https://doi.org/10.1016/j.ceramint.2015.02.035

    Article  CAS  Google Scholar 

  6. Ahlawat R (2015) “Gd2O3:SiO2 nanocomposite: study on structural and optical behavior” International Journal of Applied Ceramic Technology. Int J Appl Ceram Technol 12:E256–E260. https://doi.org/10.1111/ijac.12405

    Article  CAS  Google Scholar 

  7. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989. https://doi.org/10.1039/b809132n

    Article  CAS  Google Scholar 

  8. Jayachandraiah C, Siva Kumar K, Krishnaiah G, Madhusudhana Rao N (2015) Influence of Dy dopant on structural and photoluminescence of Dy-doped ZnO nanoparticles. J Alloys Compd 623:248–254 https://doi.org/10.1016/j.jallcom.2014.10.067

  9. Jeena TR, Moses Ezhil Raj A, Bououdina M (2017) Synthesis and photoluminescent characteristics of Dy3+ doped Gd2O3 phosphors. Mater Res Express 4:025019 https://doi.org/10.1088/2053-1591/aa5336

  10. Gao D, Li Y, Cheng L, Liu S, Xu S, Li X, Zhang J, Zhang X, Cao Y, Wang Y, Wang X, Zhang Y, Sha X, Wang L, Chen B (2022) Concentration effects of fluorescence quenching and optical transition properties of Dy3+ doped NaYF4 phosphor. J Alloy Compd 895:162616. https://doi.org/10.1016/j.jallcom.2021.162616

    Article  CAS  Google Scholar 

  11. Lin C, Zhang C, Lin J (2009) Sol-gel derived Y2O3 as an efficient bluish-white phosphor without metal activator ions. J Lumin 129:1469–1474. https://doi.org/10.1016/j.jlumin.2009.02.029

    Article  CAS  Google Scholar 

  12. Mishra K, Singh SK, Singh AK, Rai SB (2012) Optical characteristics and charge transfer band excitation of Dy3+ doped Y2O3 phosphor. Mater Res Bull 47:1339–1344. https://doi.org/10.1016/j.materresbull.2012.03.017

    Article  CAS  Google Scholar 

  13. Vats R, Ahlawat R (2021) Impact of annealing time on structural evolution of pure and Dy3+ doped CeO2 nanocrystallites, rietveld refinement and optical behavior. Int J Nanosci 20:2150033. https://doi.org/10.1142/S0219581X21500332

    Article  CAS  Google Scholar 

  14. Vats R, Chitra Bhukkal B, Rani N, Ahlawat R (2021) Nano crystalline yttria as a dye degradation agent. AIP Conf Proc 2352(1–5):040035. https://doi.org/10.1063/5.0052699

  15. Rani N, Ahlawat R, Goswami B (2020) Annealing effect on bandgap energy and photocatalytic properties of CeO2–SiO2 nanocomposite prepared by sol-gel technique. Mater Chem Phys 241:122401. https://doi.org/10.1016/j.matchemphys.2019.122401

  16. Bhukkal C, Vats R, Goswami B, Rani N (2021) Rachna Ahlawat, Zinc content (x) induced impact on crystallographic, optoelectronic, and photocatalytic parameters of Cd1-xZnxO (0≤ x ≤ 1) ternary nanopowder. Mater Sci Eng, B 265:115001. https://doi.org/10.1016/j.mseb.2020.115001

    Article  CAS  Google Scholar 

  17. Prasanna Kumar JB et al (2015) Green synthesis of Y2O3:Dy3+ nano phosphor with enhanced photocatalytic activity. Spectrochim Acta-Part A Mol Biomol Spectrosc 149:687–697. https://doi.org/10.1016/j.saa.2015.05.007

  18. Ojhaa N, Das N (2018) A Statistical approach to optimize the production of Polyhydroxyalkanoates from Wickerhamomyces anomalous VIT-NN01 using Response Surface Methodology. Int J Biol Macromol 107:2157–2170. https://doi.org/10.1016/j.ijbiomac.2017.10.089

    Article  CAS  Google Scholar 

  19. Kruk A, Polnar J (2020) Investigation on the physicochemical properties of La-doped Er0.05Y1.95O3 nanopowders. J Therm Anal Calorim 139:765–773. https://doi.org/10.1007/s10973-019-08499-9

  20. El Ghoul J, El Mir L (2017) Structural and optical properties of Tb3+ doped Y2O3 nanoparticles. J Mater Sci Mater Electron 28:9066–9071. https://doi.org/10.1007/s10854-017-6639-6

    Article  CAS  Google Scholar 

  21. Shivaramu NJ, Nagabhushana KR, Lakshminarasappa BN, Singh F (2016) Ion beam induced luminescence studies of sol gel derived Y2O3:Dy3+ nanophosphors. J Lumin 169:627–634. https://doi.org/10.1016/j.jlumin.2015.07.054

    Article  CAS  Google Scholar 

  22. Mangalaraja RV, Mouzon J, Hedström P, Camurri CP, Ananthakumar S, Odén M (2009) Microwave assisted combustion synthesis of nanocrystalline yttria and its powder characteristics. Powder Technol 191:309–314. https://doi.org/10.1016/j.powtec.2008.10.019

    Article  CAS  Google Scholar 

  23. Som S, Dutta S, Kumar V, Kumar V, Swart HC, Sharma SK (2014) Swift heavy ion irradiation induced modification in structural, optical and luminescence properties of Y2O3:Tb3+ nanophosphor. J Lumin 146:162–173. https://doi.org/10.1016/j.jlumin.2013.09.058

    Article  CAS  Google Scholar 

  24. Lakshminarasappa BN, Shivaramu NJ, Nagabhushana KR, Singh F (2014) Synthesis characterization and luminescence studies of 100 MeV Si 8+ ion irradiated sol gel derived nanocrystalline Y2O3. Nucl Instruments Methods Phys Res Sect B 329:40–47. https://doi.org/10.1016/j.nimb.2014.02.128

    Article  CAS  Google Scholar 

  25. Som S, Sharma SK (2012) Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization. J Phys D Appl Phys 45:415102–415112. https://doi.org/10.1088/0022-3727/45/41/415102

    Article  CAS  Google Scholar 

  26. Loitongbam RS, Singh WR, Phaomei G, Singh NS (2013) Blue and green emission from Ce3+ and Tb3+ co-doped Y2O3 nanoparticles. J Lumin 140:95–102. https://doi.org/10.1016/j.jlumin.2013.02.049

    Article  CAS  Google Scholar 

  27. Chi LS, Liu RS, Lee BJ (2005) Synthesis of Y2O3:Eu, Bi Red Phosphors by homogeneous coprecipitation and their photoluminescence behaviors. J Electrochem Soc 152:J93–J98. https://doi.org/10.1149/1.1940752

    Article  CAS  Google Scholar 

  28. Momma K, Izumi F (2008) VESTA: A three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658. https://doi.org/10.1107/S0021889808012016

    Article  CAS  Google Scholar 

  29. Avram D, Cojocaru B, Florea M, Tiseanu C (2016) Advances in luminescence of lanthanide doped Y2O3: case of S_6 sites. Opt Mater Express 6:1635–1643. https://doi.org/10.1364/ome.6.001635

    Article  CAS  Google Scholar 

  30. Ahlawat R (2015) Effect of concentration and temperature on the surface morphology of Gd2O3 nanocrystallites in silica. Int J Appl Ceram Technol 12:1131–1139. https://doi.org/10.1111/ijac.12343

    Article  CAS  Google Scholar 

  31. Ahlawat R (2015) Preparation and effect of thermal treatment on Gd2O3:SiO2 nanocomposite. Mod Phys Lett B 29:1550046. https://doi.org/10.1142/S0217984915500463

  32. Ahlawat R (2015) Influence of annealing temperature on structural and optical properties of SiO2:RE2O3 [RE = Y, Gd] powder. J Alloys Compd 638:356–363. https://doi.org/10.1016/j.jallcom.2015.03.077

    Article  CAS  Google Scholar 

  33. Kruk A, Wajler A, Bobruk M, Adamczyk A, Mrózek M, Gawlik W, Brylewski T (2017) Preparation of yttria powders co-doped with Nd3+, and La3+ using EDTA gel processes for application in transparent ceramics. J Eur Ceram Soc 37:4129–4140. https://doi.org/10.1016/J.JEURCERAMSOC.2017.05.040

    Article  CAS  Google Scholar 

  34. Abreu A, Zanetti SM, Oliveira MAS, Thim GP (2005) Effect of urea on lead zirconatetitanate - Pb(Zr0.52Ti0.48)O3 - nanopowders synthesized by the Pechini method. J Eur Ceram Soc 25:743–748. https://doi.org/10.1016/j.jeurceramsoc.2004.02.021

    Article  CAS  Google Scholar 

  35. Bhukkal C, Chohan M, Ahlawat R (2020) Synthesis, structural and enhanced optoelectronic properties of Cd(OH)2/CdO nanocomposite. Physica B 582:411973. https://doi.org/10.1016/j.physb.2019.411973

    Article  CAS  Google Scholar 

  36. Rani N, Ahlawat R (2019) Role of ceria nanocrystals on morphology and luminescence of Eu3+ doped SiO2 nanopowder. J Lumin 208:135–144. https://doi.org/10.1016/j.jlumin.2018.12.029

    Article  CAS  Google Scholar 

  37. Rani N, Ahlawat R (2019) Tailoring the structural and optical parameters of Eu3+: CeO2-SiO2 nanopowder via thermal treatment. SILICON 11:2521–2529. https://doi.org/10.1007/s12633-018-0041-8

    Article  CAS  Google Scholar 

  38. Srinivasan R, Yogamalar R, Bose AC (2010) Structural and optical studies of yttrium oxide nanoparticles synthesized by co-precipitation method. Mater Res Bull 45:1165–1170. https://doi.org/10.1016/j.materresbull.2010.05.020

    Article  CAS  Google Scholar 

  39. Ferby VA (2018) Luminescent activator Dy3+ ion in auto-combusted nanosized La (OH) 3. Int J Res Appl Sci Eng Technol 6:839–846. https://doi.org/10.22214/ijraset.2018.3133.

  40. Jayasimhadri M et al (2010) Greenish-yellow emission from Dy3+ doped Y2O3 nanophosphors. J Am Ceram Soc 93:494–499. https://doi.org/10.1111/j.1551-2916.2009.03426.x

    Article  CAS  Google Scholar 

  41. Shivaramu NJ, Lakshminarasappa BN, Nagabhushana KR, Singh F (2016) Synthesis characterization and luminescence studies of gamma irradiated nanocrystalline yttrium oxide. Spectrochim Acta - Part A Mol Biomol Spectrosc 154:220–231. https://doi.org/10.1016/j.saa.2015.09.019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachna Ahlawat.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vats, R., Ahlawat, R. Rietveld refinement, luminescence and catalytic study of as-synthesized and Dy3+-doped cubic Y2O3 nanopowder prepared by citrate mediated sol–gel technique. J Nanopart Res 24, 188 (2022). https://doi.org/10.1007/s11051-022-05570-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05570-9

Keywords

Navigation