Log in

Enhanced singlet oxygen production under nanoconfinement using silica nanocomposites towards improving the photooxygenation’s conversion

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this contribution, the effect of physical immobilization of methylene blue (MB) into silica nanocomposites was investigated on the conversion and selectivity of the photooxygenation of anthracene and dihydroartemisinic acid (DHAA). Physically immobilized photocatalysts were synthesized through a developed Stöber method and were thoroughly characterized by UV–Vis, FTIR, XRD, XPS, SEM, TEM, HR-TEM, BET-BJH, and EDX analyses. Based on the TEM and UV–Vis results, it was determined that enhancement of the MB concentration as an organocatalyst for the Stöber reaction led to an increase in the size of the nanoparticles from 54 to 183 nm and a 21 nm blue shift in their UV–Vis spectra. Moreover, utilizing an immobilized MB as a photocatalyst for photooxygenation reactions under visible light led to a remarkable enhancement of 9% (i.e., from 89 to 98%) in the reaction conversion of anthracene photooxygenation compared to those using the same amount of homogenous MB. Nonetheless, a 5% reduction (i.e., 83 to 78%) in the selectivity of photooxygenation of DHAA was observed. These behaviors were rationalized through the nanoconfinement effects of pores with a narrow size distribution of 3.1 nm obtained through the HR-TEM and BET-BJH analyses, which led to a controlled aggregation of the MB molecules. Deep neural networks (DNNs) were applied to accurately predict the UV–Vis spectra and aggregation of the MB molecules. The results from time-dependent density functional theory (TD-DFT) calculations suggested that aggregation of the MB led to decreasing in intersystem crossing energy gap; hence, an increase in the 1O2 generation became possible. Finally, the finite element method (FEM) simulation revealed a 300 nm penetration depth of 1O2 around synthesized photocatalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

More data used to support the findings of this study were included within the article and supporting information.

References

  1. Li C, Lin F, Sun W et al (2018) Self-assembled Rose Bengal-exopolysaccharide nanoparticles for improved photodynamic inactivation of bacteria by enhancing singlet oxygen generation directly in the solution. ACS Appl Mater Interfaces 10:16715–16722. https://doi.org/10.1021/acsami.8b01545

    Article  CAS  Google Scholar 

  2. Tsay JM, Trzoss M, Shi L et al (2007) Singlet oxygen production by peptide-coated quantum dot− photosensitizer conjugates. J Am Chem Soc 129:6865–6871

    Article  CAS  Google Scholar 

  3. Shiragami T, Makise RI, Inokuchi Y et al (2004) Efficient photocatalytic oxidation of cycloalkenes by dihydroxo(tetraphenylporphyrinato)-antimony supported on silica gel under visible light irradiation. Chem Lett 33:736–737. https://doi.org/10.1246/cl.2004.736

    Article  CAS  Google Scholar 

  4. Martins Estevão B, Miletto I, Marchese L, Gianotti E (2016) Optimized Rhodamine B labeled mesoporous silica nanoparticles as fluorescent scaffolds for the immobilization of photosensitizers: a theranostic platform for optical imaging and photodynamic therapy. Phys Chem Chem Phys 18:9042–9052. https://doi.org/10.1039/c6cp00906a

    Article  Google Scholar 

  5. Mesquita MQ, Menezes JCJMDS, Pires SMG et al (2014) Pyrrolidine-fused chlorin photosensitizer immobilized on solid supports for the photoinactivation of Gram negative bacteria. Dye Pigment 110:123–133. https://doi.org/10.1016/j.dyepig.2014.04.025

    Article  CAS  Google Scholar 

  6. Barata JFB, Daniel-Da-Silva AL, Neves MGPMS et al (2013) Corrole-silica hybrid particles: Synthesis and effects on singlet oxygen generation. RSC Adv 3:274–280. https://doi.org/10.1039/c2ra22133k

    Article  CAS  Google Scholar 

  7. Irgibayeva I, Mantel A, Barashkov N et al (2021) Study of the effect of the introduction of Tris(bipyridine)ruthenium(II) chloride into silicon dioxide particles by spectrofluorometry methods. Spectrochim Acta - Part A Mol Biomol Spectrosc 246:119007. https://doi.org/10.1016/j.saa.2020.119007

    Article  CAS  Google Scholar 

  8. Kim H, Kim W, MacKeyev Y et al (2012) Selective oxidative degradation of organic pollutants by singlet oxygen-mediated photosensitization: tin porphyrin versus C60 aminofullerene systems. Environ Sci Technol 46:9606–9613. https://doi.org/10.1021/es301775k

    Article  CAS  Google Scholar 

  9. Semeraro P, Syrgiannis Z, Bettini S et al (2019) Singlet oxygen photo-production by perylene bisimide derivative Langmuir-Schaefer films for photodynamic therapy applications. J Colloid Interface Sci 553:390–401. https://doi.org/10.1016/j.jcis.2019.06.037

    Article  CAS  Google Scholar 

  10. Montaseri H, Kruger CA, Abrahamse H (2020) Recent advances in porphyrin-based inorganic nanoparticles for cancer treatment. Int J Mol Sci 21:3358. https://doi.org/10.3390/ijms21093358

    Article  CAS  Google Scholar 

  11. Chen J, Fan T, **e Z et al (2020) Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials 237:119827. https://doi.org/10.1016/j.biomaterials.2020.119827

    Article  CAS  Google Scholar 

  12. Barona-Castaño JC, Carmona-Vargas CC, Brocksom TJ et al (2016) Porphyrins as catalysts in scalable organic reactions. Molecules 21:310. https://doi.org/10.3390/molecules21030310

    Article  CAS  Google Scholar 

  13. Wang S, Gao R, Zhou F, Selke M (2004) Nanomaterials and singlet oxygen photosensitizers: Potential applications in photodynamic therapy. J Mater Chem 487–493.https://doi.org/10.1039/b311429e

  14. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233–234:351–371. https://doi.org/10.1016/S0010-8545(02)00034-6

    Article  Google Scholar 

  15. Gianotti E, Martins Estevão B, Cucinotta F et al (2014) An efficient rose bengal based nanoplatform for photodynamic therapy. Chem - A Eur J 20:10921–10925. https://doi.org/10.1002/chem.201404296

    Article  CAS  Google Scholar 

  16. Mendoza C, Emmanuel N, Páez CA et al (2018) Improving continuous flow singlet oxygen photooxygenation reactions with functionalized mesoporous silica nanoparticles. ChemPhotoChem 2:890–897. https://doi.org/10.1002/cptc.201800148

    Article  CAS  Google Scholar 

  17. Chen XF, Ng DKP (2021) β-Cyclodextrin-conjugated phthalocyanines as water-soluble and recyclable sensitisers for photocatalytic applications. Chem Commun 57:3567–3570

    Article  CAS  Google Scholar 

  18. Byun J, Hong Y, Zhang KAI (2021) Beyond the batch: process and material design of polymeric photocatalysts for flow photochemistry. Chem Catal 771–781.https://doi.org/10.1016/j.checat.2021.08.003

  19. Zhou L, Ge X, Zhou J et al (2015) Multicolor imaging and the anticancer effect of a bifunctional silica nanosystem based on the complex of graphene quantum dots and hypocrellin A. Chem Commun 51:421–424. https://doi.org/10.1039/c4cc06968d

    Article  Google Scholar 

  20. Panwar N, Soehartono AM, Chan KK et al (2019) Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem Rev 119:9559–9656. https://doi.org/10.1021/acs.chemrev.9b00099

    Article  CAS  Google Scholar 

  21. Wang J, Zhong Y, Wang X et al (2017) PH-dependent assembly of porphyrin-silica nanocomposites and their application in targeted photodynamic therapy. Nano Lett 17:6916–6921. https://doi.org/10.1021/acs.nanolett.7b03310

    Article  CAS  Google Scholar 

  22. Martins Estevão B, Cucinotta F, Hioka N et al (2015) Rose Bengal incorporated in mesostructured silica nanoparticles: structural characterization, theoretical modeling and singlet oxygen delivery. Phys Chem Chem Phys 17:26804–26812. https://doi.org/10.1039/c5cp03564c

    Article  Google Scholar 

  23. Pineiro M, Ribeiro SM, Serra AC (2010) The influence of the support on the singlet oxygen quantum yields of porphyrin supported photosensitizers. ARKIVOC 2010:51–63. https://doi.org/10.3998/ark.5550190.0011.506

    Article  Google Scholar 

  24. Mendoza C, Désert A, Khrouz L et al (2019) Heterogeneous singlet oxygen generation: in-operando visible light EPR spectroscopy. Environ Sci Pollut Res 0–5.https://doi.org/10.1007/s11356-019-04763-5

  25. Tambosco B, Segura K, Seyrig C et al (2018) Outer-sphere effects in visible-light photochemical oxidations with immobilized and recyclable ruthenium bipyridyl salts. ACS Catal 8:4383–4389. https://doi.org/10.1021/acscatal.8b00890

    Article  CAS  Google Scholar 

  26. Nakamura T, Son A, Umehara Y et al (2016) Confined singlet oxygen in mesoporous silica nanoparticles: selective photochemical oxidation of small molecules in living cells. Bioconjug Chem 27:1058–1066. https://doi.org/10.1021/acs.bioconjchem.6b00061

    Article  CAS  Google Scholar 

  27. Kitajima N, Umehara Y, Son A et al (2018) Confinement of singlet oxygen generated from ruthenium complex-based oxygen sensor in the pores of mesoporous silica nanoparticles. Bioconjug Chem 29:4168–4175. https://doi.org/10.1021/acs.bioconjchem.8b00811

    Article  CAS  Google Scholar 

  28. Gellé A, Price GD, Voisard F et al (2021) Enhancing singlet oxygen photocatalysis with plasmonic nanoparticles. ACS Appl Mater Interfaces 13:35606–35616. https://doi.org/10.1021/acsami.1c05892

    Article  CAS  Google Scholar 

  29. Sun C, Chen T, Huang Q et al (2021) Selective production of singlet oxygen from zinc-etching hierarchically porous biochar for sulfamethoxazole degradation ☆. Environ Pollut 290:117991. https://doi.org/10.1016/j.envpol.2021.117991

    Article  CAS  Google Scholar 

  30. Hynek J, Payne DT, Chahal MK et al (2021) Enhancement of singlet oxygen generation based on incorporation of oxoporphyrinogen ( OxP ) into microporous solids. Mater Today Chem 21:100534. https://doi.org/10.1016/j.mtchem.2021.100534

    Article  CAS  Google Scholar 

  31. Zhao S, Zhao X (2019) Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework. Appl Catal B Environ 250:408–418. https://doi.org/10.1016/j.apcatb.2019.02.031

    Article  CAS  Google Scholar 

  32. Gu Y, Xu T, Zhu Z et al (2021) Atomic-scale tailoring and molecular-level tracking of oxygen-containing tungsten single-atom catalysts with enhanced singlet oxygen generation. ACS Appl Mater Interfaces 1–10.https://doi.org/10.1021/acsami.1c09016

  33. Wang J, Zhang X, Liu Y et al (2021) Enhanced singlet oxygen production over a photocatalytic stable metal organic framework composed of porphyrin and Ag. J Colloid Interface Sci 602:300–306. https://doi.org/10.1016/j.jcis.2021.05.087

    Article  CAS  Google Scholar 

  34. Shelemanov AA, Evstropiev SK, Karavaeva AV, et al (2021) Enhanced singlet oxygen photogeneration by bactericidal ZnO–MgO–Ag nanocomposites. Mater Chem Phys 125204.https://doi.org/10.1016/j.matchemphys.2021.125204

  35. Hu Y, Huang Y, Wang X et al (2018) Insight into singlet oxygen generation from metastable lattice of Treated-NaBiO3: a mechanism study. Mater Chem Phys 213:389–399. https://doi.org/10.1016/j.matchemphys.2018.03.079

    Article  CAS  Google Scholar 

  36. Tamtaji M, Kazemeini M (2020) Preparation of a novel nano-photosensitizer utilized for the photooxygenation of an organic material: a leap towards more efficient production of Artemisinin medicine. In: 8 th International Conference on Nanostructures (ICNS8). p 710

  37. Yang Z, Qian J, Yu A, Pan B (2019) Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement.https://doi.org/10.1073/pnas.1819382116

  38. Terra JCS, Desgranges A, Monnereau C et al (2020) Photocatalysis meets magnetism: designing magnetically recoverable supports for visible-light photocatalysis. ACS Appl Mater Interfaces 12:24895–24904. https://doi.org/10.1021/acsami.0c06126

    Article  CAS  Google Scholar 

  39. Tamtaji M, Tyagi A, You CY et al (2021) Singlet oxygen photosensitization using graphene-based structures and immobilized dyes: a review. ACS Appl Nano Mater 4:7563–7586. https://doi.org/10.1021/acsanm.1c01436

    Article  CAS  Google Scholar 

  40. Tamtaji M, Kazemeini M, Tyagi A, Roxas AP (2022) Selective photooxygenation of dihydroartemisinic acid in a reusable microreactor with physically immobilized photocatalysts. Mater Res Bull 145:111540. https://doi.org/10.1016/J.MATERRESBULL.2021.111540

    Article  CAS  Google Scholar 

  41. Badran HM, Eid KM, Ammar HY (2021) DFT and TD-DFT studies of halogens adsorption on cobalt-doped porphyrin: effect of the external electric field. Results Phys 23:103964. https://doi.org/10.1016/j.rinp.2021.103964

    Article  Google Scholar 

  42. Wu W, Zhang Q, Wang X et al (2017) Enhancing selective photooxidation through Co−Nx-doped carbon materials as singlet oxygen photosensitizers. ACS Catal 7:7267–7273. https://doi.org/10.1021/acscatal.7b01671

    Article  CAS  Google Scholar 

  43. De Queiroz TB, De Figueroa ER, Coutinho-Neto MD et al (2021) First principles theoretical spectroscopy of methylene blue: between limitations of time-dependent density functional theory approximations and its realistic description in the solvent. J Chem Phys 154:.https://doi.org/10.1063/5.0029727

  44. Tamtaji M, Kazemeini M (2022) Utilizing graphene oxide/gold/methylene blue ternary nanocomposite as a visible light photocatalyst for a plasmon-enhanced singlet oxygen generation. React Kinet Mech Catal 1–15. https://doi.org/10.1007/s11144-022-02271-1

  45. Sasaki N, Mabesoone MFJ, Kikkawa J et al (2020) Supramolecular double-stranded Archimedean spirals and concentric toroids. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-17356-5

    Article  CAS  Google Scholar 

  46. Lee K, Yang A, Lin Y-C et al (2021) Combating small-molecule aggregation with machine learning. Cell Reports Phys Sci 100573.https://doi.org/10.1016/j.xcrp.2021.100573

  47. Liu Y, Zhao T, Ju W, Shi S (2017) Materials discovery and design using machine learning. J Mater 3:159–177

    Google Scholar 

  48. Pink DL, Loruthai O, Ziolek RM et al (2021) Interplay of lipid and surfactant: Impact on nanoparticle structure. J Colloid Interface Sci 597:278–288. https://doi.org/10.1016/j.jcis.2021.03.136

    Article  CAS  Google Scholar 

  49. Ahmadi Azqhandi MH, Ghaedi M, Yousefi F, Jamshidi M (2017) Application of random forest, radial basis function neural networks and central composite design for modeling and/or optimization of the ultrasonic assisted adsorption of brilliant green on ZnS-NP-AC. J Colloid Interface Sci 505:278–292. https://doi.org/10.1016/j.jcis.2017.05.098

    Article  CAS  Google Scholar 

  50. Zuo Y, Qin M, Chen C et al (2021) Accelerating materials discovery with Bayesian optimization and graph deep learning

  51. Joung JF, Han M, Hwang J et al (2021) Deep learning optical spectroscopy based on experimental database: potential applications to molecular design. JACS Au 1:427–438. https://doi.org/10.1021/jacsau.1c00035

    Article  CAS  Google Scholar 

  52. Westermayr J, Marquetand P, Marquetand P (2020) Deep learning for UV absorption spectra with SchNarc: first steps toward transferability in chemical compound space. J Chem Phys 153:.https://doi.org/10.1063/5.0021915

  53. Zhang Y, Xu X (2021) Machine learning modeling of metal surface energy. Mater Chem Phys 267:124622. https://doi.org/10.1016/j.matchemphys.2021.124622

    Article  CAS  Google Scholar 

  54. Hoppe R, Schulz-Ekloff G, Wöhrle D et al (1993) X.p.s. investigation of methylene blue incorporated into faujasites and AIPO family molecular sieves. Zeolites 13:222–228. https://doi.org/10.1016/S0144-2449(05)80281-7

    Article  CAS  Google Scholar 

  55. Mitschke B, Turberg M, List B (2020) Confinement as a unifying element in selective catalysis. Chem 6:2515–2532. https://doi.org/10.1016/j.chempr.2020.09.007

    Article  CAS  Google Scholar 

  56. Wang H, Zhang SF, Liu JW et al (2012) Enhanced dehydrogenation of nanoscale MgH 2 confined by ordered mesoporous silica. Mater Chem Phys 136:146–150. https://doi.org/10.1016/j.matchemphys.2012.06.044

    Article  CAS  Google Scholar 

  57. Bagherzadeh SB, Kazemeini M, Mahmoodi NM (2021) Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-Fenton-like degradation of organic contaminants. J Colloid Interface Sci 602:73–94. https://doi.org/10.1016/j.jcis.2021.05.181

    Article  CAS  Google Scholar 

  58. Saita S, Anzai M, Mori N, Kawasaki H (2021) Controlled aggregation of methylene blue in silica–methylene blue nanocomposite for enhanced 1O2 generation. Colloids Surfaces A Physicochem Eng Asp 617:126360. https://doi.org/10.1016/j.colsurfa.2021.126360

    Article  CAS  Google Scholar 

  59. Feng L, Wang Y, Yuan S et al (2019) Porphyrinic metal-organic frameworks installed with brønsted acid sites for efficient tandem semisynthesis of artemisinin. ACS Catal 9:5111–5118. https://doi.org/10.1021/acscatal.8b04960

    Article  CAS  Google Scholar 

  60. Grommet AB, Feller M, Klajn R (2020) Chemical reactivity under nanoconfinement. Nat Nanotechnol 15:256–271. https://doi.org/10.1038/s41565-020-0652-2

    Article  CAS  Google Scholar 

  61. Bälter M, Li S, Morimoto M et al (2016) Emission color tuning and white-light generation based on photochromic control of energy transfer reactions in polymer micelles. Chem Sci 7:5867–5871. https://doi.org/10.1039/c6sc01623e

    Article  CAS  Google Scholar 

  62. Xu G, Li C, Chi C et al (2022) A supramolecular photosensitizer derived from an Arene-Ru(II) complex self-assembly for NIR activated photodynamic and photothermal therapy. Nat Commun 13: https://doi.org/10.1038/s41467-022-30721-w

  63. Liu J, Wang N, Yu Y et al (2017) Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci Adv 3: https://doi.org/10.1126/sciadv.1603171

  64. Greczynski G, Hultman L (2020) X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog Mater Sci 107:100591. https://doi.org/10.1016/j.pmatsci.2019.100591

    Article  CAS  Google Scholar 

  65. Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1758

    Article  CAS  Google Scholar 

  66. Jockusch S, Sivaguru J, Turro NJ, Ramamurthy V (2005) Direct measurement of the singlet oxygen lifetime in zeolites by near-IR phosphorescence. Photochem Photobiol Sci 4:403–405. https://doi.org/10.1039/b501701g

    Article  CAS  Google Scholar 

  67. Paul P, Mati SS, Bhattacharya SC, Kumar GS (2017) Exploring the interaction of phenothiazinium dyes methylene blue, new methylene blue, azure A and azure B with tRNAPhe: Spectroscopic, thermodynamic, voltammetric and molecular modeling approach. Phys Chem Chem Phys 19:6636–6653. https://doi.org/10.1039/c6cp07888e

    Article  CAS  Google Scholar 

  68. Amara Z, Bellamy JFB, Horvath R et al (2015) Applying green chemistry to the photochemical route to artemisinin. Nat Chem 7:489–495. https://doi.org/10.1038/nchem.2261

    Article  CAS  Google Scholar 

Download references

Funding

These authors thankfully acknowledge a partial financial assistance received for this project from the INSF under the grant no. of 4005066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazemeini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Physically immobilized MB was used as a photocatalyst for enhanced photooxygenation reactions.

• Nine percent increase in the conversion of anthracene and five percent decrease in the selectivity of DHAA revealed under visible light.

• Behavior was rationalized via nanoconfinement effects on pores with the size of 3.1 nm obtained from BET-BJH analysis.

• DNN was utilized to predict the UV–Vis spectra and aggregation of synthesized photocatalysts.

• TD-DFT calculations suggested that aggregation of MB decreased the intersystem crossing energy gap and increased 1O2 generation.

• FEM simulation revealed a 300 nm penetration depth of 1O2 around photocatalysts.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3785 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamtaji, M., Kazemeini, M. Enhanced singlet oxygen production under nanoconfinement using silica nanocomposites towards improving the photooxygenation’s conversion. J Nanopart Res 24, 174 (2022). https://doi.org/10.1007/s11051-022-05553-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05553-w

Keywords

Navigation