Log in

Facile synthesis of nickel–cobalt double hydroxide nanosheets with high rate capability for application in supercapacitor

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, nickel–cobalt double hydroxide nanosheets with high rate capability are prepared by a facile epoxide precipitation route. The synthetic procedure includes an oxidization step using ammonium persulfate as oxidant and a precipitation step using propylene oxide as precipitation agent. As shown in the results of electrochemical characterization, high specific capacitance of 2548 F g−1 for this material can be obtained at current density of 0.9 A g−1 in aqueous solution of 3 mol L−1 KOH. It is surprising to notice that the capacitance of material still remains 1587 F g−1 at high current density of 35.7 A g−1. These results demonstrate that the as-prepared nickel–cobalt double hydroxide nanosheets are promising electrode material for supercapacitor application as a primary power source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Begum S, Muralidharan V, Ahmedbasha C (2009) The influences of some additives on electrochemical behaviour of nickel electrodes. Int J Hydrog Energy 34:1548–1555

    Article  Google Scholar 

  • Bing L, Yuan HT, Zhang YS, Zhou ZX, Song DY (1999) Cyclic voltammetric studies of stabilized α-nickel hydroxide electrode. J Power Sources 79:277–280

    Article  Google Scholar 

  • Chen X, Chen XH, Zhang FQ, Yang Z, Huang SM (2013) One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J Power Sources 243:555–561

    Article  Google Scholar 

  • Chen H, Hu LF, Chen M, Yan L, Wu LM (2014) Nickel–Cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24:934–942

    Article  Google Scholar 

  • Cheng YW, Zhang HB, Varanasi CV, Liu J (2013) Improving the performance of cobalt–nickel hydroxide- based self-supporting electrodes for supercapacitors using accumulative approaches†. Energy Environ Sci 6:3314–3321

    Article  Google Scholar 

  • Cui HT, Liu Y, Ren WZ (2013a) Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv Powder Technol 24:93–97

    Article  Google Scholar 

  • Cui HT, Zhao YN, Ren WZ, Wang MM, Liu Y (2013b) Large scale selective synthesis of & α-Co(OH)2 and b-Co(OH)2 nanosheets through a fluoride ions mediated phase transformation process. J Alloys Compd 562:33–37

    Article  Google Scholar 

  • Deki S, Hosokawa A (2013) α-Ni(OH)2 thin films fabricated by liquid phase deposition method. Thin Solid Films 517:1546–1554

    Article  Google Scholar 

  • Gupta V, Gupta S, Miura N (2008) Potentiostatically deposited nanostructured Co x Ni1−x layered double hydroxides as electrode materials for redox-supercapacitors. J Power Sources 175:680–685

    Article  Google Scholar 

  • Hu ZA, **e YL, Wang YX, Wu HY, Yang YY, Zhang ZY (2009a) Electrochimica acta synthesis and electrochemical characterization of mesoporous Co x Ni1−x layered double hydroxides as electrode materials for supercapacitors. Electrochim Acta 54:2737–2741

    Article  Google Scholar 

  • Hu ZA, **e YL, Wang YX, **e LJ, Fu GR, ** XQ, Zhang ZY, Yang YY, Wu HY (2009b) Synthesis of α-cobalt hydroxides with different intercalated anions and effects of intercalated anions on their morphology, basal plane spacing, and capacitive property. J Phys Chem C 113:12502–12508

    Article  Google Scholar 

  • Kong XH, Liu XB, He YD, Zhang DS, Wang XF, Li YD (2007) Hydrothermal synthesis of β-nickel hydroxide microspheres with flakelike nanostructures and their electrochemical properties. Mater Chem Phys 106:375–378

    Article  Google Scholar 

  • Kong LB, Lang JW, Liu M, Luo YC, Kang L (2009) Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. J Power Sources 194:1194–1201

    Article  Google Scholar 

  • Lee JW, Ahn T, Soundararajan D, Ko JM, Kim JD (2011) Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem Commun 47:6305–6307

    Article  Google Scholar 

  • Lei LX, Hu M, Gao XR, Sun YM (2008) The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochim Acta 54:671–676

    Article  Google Scholar 

  • Li YW, Yao JH, Liu CJ, Zhao WM, Deng WX, Zhong SK (2010) Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. Int J Hydrog Energy 35:2539–2545

    Article  Google Scholar 

  • Li JX, Yang M, Zhou Z (2012) Nanoscale Ni(OH)2–Co(OH)2 composites as pseudocapacitor materials. Nanoscale 4:4498–4503

    Article  Google Scholar 

  • Liang JB, Ma RZ, Iyi N, Ebina Y, Takada K, Sasaki T (2010) Topochemical synthesis, anion exchange, and exfoliation of Co–Ni layered double hydroxides: a route to positively charged Co–Ni hydroxide nanosheets with tunable composition. Chem Mater 22:371–378

    Article  Google Scholar 

  • Liu XH, Ma RZ, Bando Y, Sasaki T (2012) A general strategy to layered transition-metal hydroxide nanocones: tuning the composition for high electrochemical performance. Adv Mater 24:2148–2153

    Article  Google Scholar 

  • Mondal C, Ganguly M, Manna PK, Yusuf SM, Pal T (2013) Fabrication of porous β–Co(OH)2 architecture at room temperature: a high performance supercapacitor. Langmuir 29:9179

    Article  Google Scholar 

  • Oshitani M, Yufu H, Takashima K, Tsuji S, Matsumaru Y (1989) Development of a pasted nickel electrode with high active material utilization. J Electrochem Soc 136:1590–1593

    Article  Google Scholar 

  • Pan T, Wang JM, Zhao YL, Chen H, **ao HM, Zhang JQ (2003) Al-stabilized α-nickel hydroxide prepared by electrochemical impregnation. Mater Chem Phys 78:711–718

    Article  Google Scholar 

  • Park JH, Kim S, Park OO, Ko JM (2005) Improved asymmetric electrochemical capacitor using Zn–Co co-doped Ni(OH)2 positive electrode material. Appl Phys A 82:593–597

    Article  Google Scholar 

  • Pu J, Tong Y, Wang SB, Sheng EH, Wang ZH (2014) Nickelecobalt hydroxide nanosheets arrays on Ni foam for pseudocapacitor applications. J Power Sources 250:250–256

    Article  Google Scholar 

  • Rajeswari J, Kishore PS, Viswanathan B, Varadarajan TK (2009) One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem Commun 11:572–575

    Article  Google Scholar 

  • Vidotti M, Silva MR, Salvador RP, Torresi SLC, Dall’Antonia LH (2008) Electrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodes. Electrochim Acta 53:4030–4034

    Article  Google Scholar 

  • Wang GP, Zhang L, Kim J, Zhang JJ (2012) Nickel and cobalt oxide composite as a possible electrode material for electrochemical supercapacitors. J Power Sources 217:554–561

    Article  Google Scholar 

  • Wang MM, Ren WZ, Zhao YN (2013) One-pot synthesis of powder-form & α-Ni(OH)2 monolayer nanosheets with high electrochemical performance. J Nanopart Res 15:1849

    Article  Google Scholar 

  • Wu JB, Tu JP, Wang XL, Zhang WK (2007) Synthesis of nanoscale CoO particles and their effect on the positive electrodes of nickel–metal hydride batteries. Int J Hydrog Energy 32:606–610

    Article  Google Scholar 

  • **e LJ, Hu ZA, Lv CX, Sun GH, Wang JL, Li YQ, He HW, Wang J, Li KX (2012) Co x Ni1−x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials. Electrochim Acta 78:205–211

    Article  Google Scholar 

  • Xu J, Gao L, Cao JY, Wang WC, Chen ZD (2010) Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim Acta 56:732–736

    Article  Google Scholar 

  • Xu J, Dong YZ, Cao JY, Guo B, Wang WC, Chen ZD (2013) Electrochimica acta microwave-incorporated hydrothermal synthesis of urchin-like Ni(OH)2–Co(OH)2 hollow microspheres and their supercapacitor applications. Electrochim Acta 114:76–82

    Article  Google Scholar 

  • Yan T, Li ZJ, Ruiyi Li, Qi N, Hui K, Niu YL, Liu JK (2012) Nickel–cobalt double hydroxides microspheres with hollow interior and hedgehog-like exterior structures for supercapacitors. J Mater Chem 22:23587–23592

    Article  Google Scholar 

  • Yang GW, Xu CL, Li HL (2008) Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem Commun 6537–6539. doi:10.1039/b815647f

  • Zhao Y (2004) Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea. Int J Hydrog Energy 29:889–896

    Article  Google Scholar 

  • Zhong JH, Wang AL, Li GR, Wang JW, Ou YN, Tong YX (2012) Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J Mater Chem 22:5656

    Article  Google Scholar 

  • Zhuo LH, Ge JC (2009) Solvothermal synthesis of CoO, Co3O4, Ni(OH)2 and Mg(OH)2 nanotubes. Cryst Growth Des 9:5–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xue, J., Zhang, F. et al. Facile synthesis of nickel–cobalt double hydroxide nanosheets with high rate capability for application in supercapacitor. J Nanopart Res 17, 106 (2015). https://doi.org/10.1007/s11051-015-2918-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2918-4

Keywords

Navigation