Log in

Synthesis of nanofiber-composed dandelion-like CoNiAl triple hydroxide as an electrode material for high-performance supercapacitor

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, CoNiAl triple hydroxide with nanofiber-composed dandelion-like morphology was synthesized on nickel foam by a hydrothermal route. This delicate nanostructure was initiated from the rolling up of hydroxide nanosheets. The hierarchical nanostructure and optimized molar ratio of Co, Ni, and Al guarantees the high electrochemical performance of obtained samples. The maximum specific capacitance of 2,791 F g−1 for the as-prepared CoNiAl hydroxides was achieved at scan rate of 5 mV s−1 in 3 M KOH aqueous solution. The capacitance of material still remained 85 % after 2,000 charge–discharge cycles. These results demonstrated that the as-prepared CoNiAl triple hydroxide can be applied as a high-performance electrode material for supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Carotenuto G, Longo A, De Nicola S, Camerlingo C, Nicolais L (2013) A simple mechanical technique to obtain carbon nanoscrolls from graphite nanoplatelets. Nanoscale Res Lett 8:403

    Article  Google Scholar 

  • Chen Y, Lu J, Gao ZX (2007) Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J Phys Chem C 111:1625–1630

    Article  Google Scholar 

  • Chen XA, Chen XH, Zhang FQ, Yang Z, Huang XM (2013) One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J Power Sources 243:555–561

    Article  Google Scholar 

  • Fan Z, Chen JH, Cui KZ, Sun F, Xu Y, Kuang YF (2007) Preparation and capacitive properties of cobalt-nickel oxides/carbon nanotube composites. Electrochim Acta 52:2959–2965

    Article  Google Scholar 

  • Gupta V, Gupta S, Miura N (2009) Electrochemically synthesized large area network of CoxNiyAlz layered triple hydroxides nanosheets: a high performance supercapacitor. J Power Sources 189:1292–1295

    Article  Google Scholar 

  • Hahm MG, Leela Mohana Reddy A, Cole DP, Rivera M, Vento GA, Nam J, Jung HY, Kim YL, Narayanan NT, Hashim DP, Galande C, Jun YJ, Bundy M, Karna S, Ajayan PM, Vajtai R (2012) Carbon nanotube-nanocup hybrid structures for high power supercapacitor applications. Nano Lett 12:5616–5621

    Article  Google Scholar 

  • Hu WK, Gao XP, Noréus D, Burchardt T, Nakstad NK (2006) Evaluation of nano-crystal sized α-nickel hydroxide as an electrode material for alkaline rechargeable cells. J Power Sources 160:704–710

    Article  Google Scholar 

  • Hu ZA, **e YL, Wang YX, Wu HY, Yang YY, Zhang ZY (2009) Synthesis and electrochemical characterization of mesoporous CoxNi1-x layered double hydroxides as electrode materials for supercapacitors. Electrochim Acta 54:2737–2741

    Article  Google Scholar 

  • Huggins RA, Kiel D, Universitat CA (2000) Supercapacitors and electrochemical pulse sources. Solid State Ionics 134:179–195

    Article  Google Scholar 

  • Jagadale AD, Dubal DP, Lokhande CD (2012) Electrochemical behavior of potentiodynamically deposited cobalt oxyhydroxide (CoOOH) thin films for supercapacitor application. Mater Res Bull 47:672–676

    Article  Google Scholar 

  • Jayashree RS, Kamath PV (2001) Suppression of the α → β-nickel hydroxide transformation in concentrated alkali : role of dissolved cations. J Applied Electrochem 31:1315–1320

    Article  Google Scholar 

  • Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  • Lang JW, Kong LB, Liu M, Luo YC, Kang L (2008) A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J Solid State Electrochem 13:333–340

    Article  Google Scholar 

  • Lang JW, Kong LB, Liu M, Luo YC, Kang L (2009) Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. J Solid State Electrochem 14:1533–1539

    Article  Google Scholar 

  • Liang JB, Ma RZ, Iyi N, Ebina Y, Takada K, Sasaki T (2010) Topochemical synthesis, anion exchange, and exfoliation of Co–Ni layered double hydroxides: a route to positively charged Co–Ni hydroxide nanosheets with tunable composition. Chem Mater 22:317–378

    Google Scholar 

  • Liu XM, Zhang YH, Zhang XG, Fu SY (2004) Studies on Me/Al-layered double hydroxides (Me = Ni and Co) as electrode materials for electrochemical capacitors. Electrochim Acta 49:3137–3141

    Article  Google Scholar 

  • Lu Q, Chen JG, **ao JQ (2013) Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem Int Ed 52:1882–1889

    Article  Google Scholar 

  • Mavis B, Akinc M (2004) Three-component layer double hydroxides by urea precipitation: structural stability and electrochemistry. J Power Sources 134:308–317

    Article  Google Scholar 

  • Reddy MV, Yu T, Sow C-H, Shen ZX, Lim CT, Subba Rao GV, Chowdari BVR (2007) α-Fe2O3 nanoflakes as an anode material for Li-Ion batteries. Adv Funct Mater 17:2792–2799

    Article  Google Scholar 

  • Ren LL, Hu JS, Wan LJ, Bai CL (2007) A simple method to synthesize layered double hydroxide nanoscrolls. Mater Res Bull 42:571–575

    Article  Google Scholar 

  • Su LH, Ma CL, Hou T, Han WJ (2013) Selective synthesis and capacitive characteristics of CoNiAl three-component layered double hydroxide platelets. RSC Adv 3:19807–19811

    Article  Google Scholar 

  • Vangari M, Pryor T, Jiang L (2013) Supercapacitors : review of Materials and Fabrication Methods. J Energy Eng 139:72–79

    Article  Google Scholar 

  • Vialat P, Leroux F, Taviot-Gueho C, Villemure G, Mousty C (2013) Insights into the electrochemistry of (Co x Ni(1−x))2Al–NO3 layered double hydroxides. Electrochim Acta 107:599–610

  • Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  • Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  Google Scholar 

  • Yan J, Sun W, Wei T, Zhang Q, Fan ZJ, Wei F (2012) Fabrication and electrochemical performances of hierarchical porous. J Mater Chem 22:11494–11502

    Article  Google Scholar 

  • Yang GW, Xu CL, Li HL (2008) Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem Commun 48(1):6537–6539

    Article  Google Scholar 

  • Yang F, Yao JY, Liu FL, He HC, Zhou M, **ao P, Zhang YH (2013) Ni–Co oxides nanowire arrays grown on ordered TiO2 nanotubes with high performance in supercapacitors. J Mater Chem A 1:594–601

    Article  Google Scholar 

  • Ye CH, Bando Y, Shen GZ, Golberg D (2006) Formation of crystalline SrAl2O4 nanotubes by a roll-up and post-annealing approach. Angew Chemie 118:5044–5048

    Article  Google Scholar 

  • Zhang F, Jiang JW, Yuan CZ, Hao L, Shen LF, Zhang LJ, Zhang XG (2011) Glycine-assisted hydrothermal synthesis of nanostructured Co x Ni1−x -Al layered triple hydroxides as electrode materials for high-performance supercapacitors. J Solid State Electrochem 16:1933–1940

    Article  Google Scholar 

  • Zheng HJ, Tang FQ, Lim M, Mukherji A, Yan XX, Wang LZ, Lu GQ (2010) Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor. J Power Sources 195:680–683

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Shandong Provincial Engineering Research Center for Light Hydrocarbon Comprehensive Utilization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Ren, W., Wang, M. et al. Synthesis of nanofiber-composed dandelion-like CoNiAl triple hydroxide as an electrode material for high-performance supercapacitor. J Nanopart Res 16, 2765 (2014). https://doi.org/10.1007/s11051-014-2765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2765-8

Keywords

Navigation