Log in

Core–shell cermet condensates by pulsed-laser ablation on Zn in TEOS

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Spherical cermet condensates with metallic Zn core and specific shell types, both having significant internal compressive stress, were fabricated by pulsed-laser ablation on Zn target in TEOS for X-ray/electron diffraction and spectroscopic characterizations. The nanosized Zn cores have 1-D commensurate (0001) superstructure and wurtzite-type ZnO shell following almost parallel epitaxy relationship, i.e., basal planes exactly in parallel but others slightly off, across a semicoherent interface. The submicron-sized Zn condensates were free of superstructure and encapsulated by a Si–H-signified turbostratic graphite shell. The defective cermet condensates thus fabricated showed UV–Vis photoemission and absorption with a minimum band gap of 1.95 eV for potential optoelectronic and catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baneyeva MI, Popova SV (1969) A study of zinc hydroxide at high pressures and temperatures. Geochem Int 6:807–809

    Google Scholar 

  • Bunting EN (1930) Phase equilibria in the system SiO2–ZnO. J Am Ceram Soc 13:5–10

    Article  Google Scholar 

  • Chen SY, Shen P (2002) Laser ablation condensation of α-PbO2 type TiO2. Phys Rev Lett 89:096106-1–096106-4

    Google Scholar 

  • Chen J, Steckl AJ, Loboda MJ (1998) Molecular beam epitaxy growth of SiC on Si(111) from silacyclobutan. J Vac Sci Technol B 16:1305–1308

    Article  Google Scholar 

  • Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  Google Scholar 

  • Choyke WJ, Matsunami H, Pensl G (eds) (1997) Fundamental questions and applications of SiC. Special issue of physica status solidi, vol 202. Wiley, Berlin

    Google Scholar 

  • Cusco R, Alarcón-Lladó E, Ibáñez J, Artús L, Jiménez J, Wang B, Callahan M (2007) Temperature dependence of Raman scattering in ZnO. Phys Rev B 75:165202

    Article  Google Scholar 

  • Deroubaix G, Marcus P (1992) X-ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides. Surf Interface Anal 18:39–46

    Article  Google Scholar 

  • Duffy JA (1990) Bonding, energy levels and bands in inorganic solids. Longman Scientific & Technical, Essex, p 249

    Google Scholar 

  • Filipponi A, Fiorini P, Evangelisti F, Balerna A, Mobilio S (1986) Amorphous hydrogenated alloys: a comparative EXAFS study of a-Si1-xCx:H, a-Si1-xGex:H, a-SiNx: H at the silicon K-edge. J Phys 47(C8):357–361

    Google Scholar 

  • Fonoberov VA, Alim KA, Balandin AA, **u F, Liu J (2006) Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals. Phys Rev B 73:165317

    Article  Google Scholar 

  • French RH, Abou-Rahme R, Jones DJ, McNeil LE (1992) Absorption edge and band gap of SiO2 glass. Ceram Trans 28:63–80

    Google Scholar 

  • Goldshleger UI, Merzhanov AG (1983) Dokl Phys Chem (Engl Transl) 269:238–242 see also Figure 8696 of Levin EM, Robbins CR, McMurdie HF, Reser M (1964–1989) Phase diagrams for ceramists. American Ceramic Society

  • Harima H (2006) Raman scattering characterization on SiC. Microelectron Eng 83:126–129

    Article  Google Scholar 

  • Hartman P, Perdok WG (1955a) On the relations between structure and morphology of crystals I. Acta Crystallogr 8:49–52

    Article  Google Scholar 

  • Hartman P, Perdok WG (1955b) On the relations between structure and morphology of crystals II. Acta Crystallogr 8:521–524

    Article  Google Scholar 

  • Huang BH, Shen P, Chen SY (2008a) {\(10\bar{1}1\)} artificial epitaxy of ZnO on glass via pulse laser deposition. J Eur Ceram Soc 28:2545–2555

  • Huang BH, Chen SY, Shen P (2008b) {10\(\bar{1}\)1} and {11\(\overline{2}\)1}-specific growth and twinning of ZnO whiskers. J Phys Chem C 112:1064–1071

  • Huang BH, Shen P, Chen SY (2009a) Electron irradiation induced rock salt type structure from ZnO/Zn intergrowth. J Eur Ceram Soc 29:743–750

    Article  Google Scholar 

  • Huang BH, Shen P, Chen SY (2009b) Tapered ZnO whiskers: {hkil}-specific mosaic twinning VLS growth from a partially molten bottom source. Nanoscale Res Lett 4:503–512

    Article  Google Scholar 

  • Huang CN, Chen SY, Zheng Y, Shen P (2009c) Water-driven assembly of laser ablation-induced Au condensates as mesomorphic nano- and micro-tubes. Nanoscale Res Lett 4:1064–1072

    Article  Google Scholar 

  • Ishikawa Y, Shimizu Y, Sasaki T, Koshizaki N (2006) Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature. J Colloid Interface Sci 300:612–615

    Article  Google Scholar 

  • Itoh A, Matsunami H (1997) Single crystal growth of SiC and electronic devices. Crit Rev Solid State Mater Sci 22:111–197

    Article  Google Scholar 

  • **g L, Xu Z, Shang J, Sun X, Cai W, Guo H (2001) The preparation and characterization of ZnO ultrafine particles. Mater Sci Eng A 332:356–361

  • Kaneko T, Nemoto D, Horiguchi A, Miyakawa N (2005) FTIR analysis of a-SiC: H films grown by plasma enhanced CVD. J Cryst Growth 275:1097–1101

    Article  Google Scholar 

  • Kang JS, Kang HS, Pang SS, Shim ES, Lee SY (2003) Investigation on the origin of green luminescence from laser-ablated ZnO thin film. Thin Solid Film 443:5–8

    Article  Google Scholar 

  • Kim R, Qin W, Wei G, Wang G, Wang L, Zhang D, Zheng K, Liu N (2009) A simple synthesis of large-scale SiC–SiO2 nanocables by using thermal decomposition of methanol: structure, FTIR, Raman and PL characterization. J Cryst Growth 311:4301–4305

    Article  Google Scholar 

  • Kwon YJ, Kim KH, Lim CS, Shim KB (2002) Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organochemical route. J Ceram Process Res 3:146–149

    Google Scholar 

  • Late DJ, More MA, Joag DS, Misra P, Singh BN, Kukreja LM (2006) Field emission studies on well adhered pulsed laser deposited LaB6 onW tip. Appl Phys Lett 89:123510

    Article  Google Scholar 

  • Late DJ, More MA, Misra P, Singh BN, Kukreja LM, Joag DS (2007) Field emission studies of pulsed laser deposited LaB6 films on W and Re. Ultramicroscopy 107:825–832

    Article  Google Scholar 

  • Late DJ, Date KS, More MA, Misra P, Singh BN, Kukreja LM, Dharmadhikari CV, Joag DS (2008a) Enhanced field emission from LaB6 thin films with nanoprotrusions grown by pulsed laser deposition on Zr foil. Appl Surf Sci 254:3601–3605

    Article  Google Scholar 

  • Late DJ, Date KS, More MA, Misra P, Singh BN, Kukreja LM, Dharmadhikari CV, Joag DS (2008b) Some aspects of pulsed laser deposited nanocrystalline LaB6 film: atomic force microscopy, constant force current imaging and field emission investigations. Nanotechnology 19:265605

    Article  Google Scholar 

  • Late DJ, Misra P, Singh BN, Kukreja LM, Joag DS, More MA (2009a) Enhanced field emission from pulsed laser deposited nanocrystalline ZnO thin films on Re and W. Appl Phys A 95:613–620

    Article  Google Scholar 

  • Late DJ, Singh VR, Sinha S, More MA, Dasgupta K, Joag DS (2009b) Synthesis of LaB6 micro/nano structures using picosecond (Nd:YAG) laser and its field emission investigations. Appl Phys A 97:905–909

    Article  Google Scholar 

  • Late DJ, More MA, Sinha S, Dasgupta K, Misra P, Singh BN, Kukreja LM, Bhoraskar SV, Joag DS (2011) Synthesis and characterization of LaB6 thin films on tungsten, rhenium, silicon and other substrates and their investigations as field emitters. Appl Phys A 104:677–685

    Article  Google Scholar 

  • Laughlin RB (1980) Optical absorption edge of SiO2. Phys Rev B 22:3021–3029

    Article  Google Scholar 

  • Lee ST, Peng HY, Zhou XT, Wang N, Lee CS, Bello I, Lifshitz Y (2000) A nucleation site and mechanism leading to epitaxial growth of diamond films. Science 287:104–106

    Article  Google Scholar 

  • Levin EM, Robbins CR, McMurdie HF, Reser MK (1964–1989) Phase diagrams for ceramists. American Ceramic Society, Columbus

  • Li JW, Yang LW, Zhou ZF, Chu PK, Wang XH, Zhou J, Li LT, Sun CQ (2010) Band gap modulation in ZnO by size, pressure, and temperature. J Phys Chem C 114:13370–13374

    Article  Google Scholar 

  • Liang CH, Shimizu Y, Masuda M, Sasaki T, Koshizaki N (2004) Preparation of layered zinc hydroxide/surfactant nanocomposite by pulsed-laser ablation in a liquid Medium. Chem Mater 16:963–965

    Article  Google Scholar 

  • Lin CC, Shen P (1994a) Nonisothermal site saturation during transformation of Zn2SiO4. J Solid State Chem 112:387–391

    Article  Google Scholar 

  • Lin CC, Shen P (1994b) Sol-gel synthesis of zinc orthosilicate. J Noncryst Solids 171:281–289

    Article  Google Scholar 

  • Lin CC, Shen P (1994c) The role of Ti4+ on the structure and transformations of gel-produced Zn2SiO4. J Solid State Chem 112:381–386

    Article  Google Scholar 

  • Lin BC, Shen P, Chen SY (2011) ZnO and ε-Zn(OH)2 composite nanoparticles by PLAL. J Phys Chem C 115:5003–5010

    Article  Google Scholar 

  • Liu LG, Bassett WA (1986) Elements, oxides, and silicates: high-pressure phases with implications for the earth’s interior. Oxford University Press, New York, p 209

    Google Scholar 

  • Mysen BO, Virgo D, Scarfe CM (1980) Relations between the anionic structure and viscosity of silicate melts—a Raman spectroscopic study. Am Mineral 65:690–710

    Google Scholar 

  • Qian J, Wang J, ** Z (2004) Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal. Mater Sci Eng A 371:229–235

    Article  Google Scholar 

  • Rubio F, Rubio J, Oteo JL (1998) A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectrosc Lett 31:199–219

    Article  Google Scholar 

  • Singh J, Kumar P, Late DJ, Singh T, More MA, Joag DS, Tiwari RS, Hui KS, Srivastava ON (2012) Optical and field emission properties in different nanostructures of ZnO. Dig J Nanomater Biostruct 7:525–536

    Google Scholar 

  • Usui H, Shimizu Y, Sasaki T, Koshizaki N (2005) Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J Phys Chem B 109:120–124

    Article  Google Scholar 

  • Wang Y, Wang H, Ma G (1998) Effects of high-temperature annealing on the structure of reactive sputtering a-SiC: H films. Thin Solid Films 335:249–252

    Article  Google Scholar 

  • Williams DB, Carter CB (1996) Transmission electron microscopy: a textbook for materials science. Plenum Press, New York, p 445

    Book  Google Scholar 

  • Xu J, Ji W, Wang XB, Shu H, Tang SH (1998) Temperature dependence of the Raman scattering spectra of Zn/ZnO nanoparticles. J Raman Spectrosc 29:613–615

    Article  Google Scholar 

  • Zeng H, Cai W, Hu J, Duan G, Liu P, Li Y (2006) Violet photoluminescence from shell layer of Zn/ZnO core–shell nanoparticles induced by laser ablation. Appl Phys Lett 88:171910

    Article  Google Scholar 

Download references

Acknowledgments

We thank Miss S.Y. Shih for the help on XPS analysis and anonymous referees for constructive comments. This work was supported by the Center for Nanoscience and Nanotechnology at NSYSU and the National Science Council, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuei-Yuan Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 294 kb)

Appendix

Appendix

Stereographic projection of the crystallographic axes of ideally aligned Zn/W-ZnO with a slight misorientation of pyramidal planes due to c/a difference based on the ambient lattice parameters of Zn (a = 2.665 nm, c = 4.947 nm, c/a = 1.856, JCPDS file 04-0831) and W-ZnO (a = 3.250 nm, c = 5.207 nm, c/a = 1.602, JCPDS file 36-1451).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, BC., Shen, P. & Chen, SY. Core–shell cermet condensates by pulsed-laser ablation on Zn in TEOS. J Nanopart Res 16, 2444 (2014). https://doi.org/10.1007/s11051-014-2444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2444-9

Keywords

Navigation