Log in

Magnetic properties of pure and Eu-doped hematite nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) of pure and Eu-doped hematite were prepared by a wet chemical technique; their structure, size and morphology were determined by XRD and transmission electron microscopy. The magnetic properties were measured in the 6–320 K temperature range by vibrating-sample magnetometry. Pure hematite NPs exhibit a pseudo-cubic shape with a size of about 74 nm; addition of trivalent Eu cations in different amounts (Eu/Fe atomic ratios 2.4 %) brings about a definite change in particle morphology with the development of rice-grain like NPs with aspect ratios of about 2.8. Trivalent Eu cations act as magnetic defects making the overall antiferromagnetic arrangement of hematite host less robust. A large defect magnetism arises below the Morin transition temperature. The resulting uncompensated moments on NPs (mostly arising from the NP cores) behave superparamagnetically before undergoing single-particle blocking at about 40 K. Instead, uncompensated moments in pure hematite NPs mostly occur at the NP surface and lead to standard defect ferromagnetism. Above the Morin temperature, the usual spin-canted ferromagnetism is observed in all samples, although it is somewhat inhibited by Eu addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amin N, Arajs S (1987) Morin temperature of annealed submicronic α-Fe2O3 particles. Phys Rev Lett 35:4810–4811

    CAS  Google Scholar 

  • Ananth KP, Gielisse PJ, Rockett TJ (1974) Synthesis and characterization of Europium sulfide. Mat Res Bull (Pergamon Press) 9:1167–1172

    Article  CAS  Google Scholar 

  • Artman JO, Murphy JC, Foner S (1965) Magnetic anisotropy in antiferromagnetic corundum-type sesquioxides. Phys Rev 138:A912–A917

    Article  Google Scholar 

  • Ashtaputre SS, Deshpande A, Marathe S, Wankhede ME, Chimanpure J, Pasricha R, Urban J, Kharam SK, Gosavi SV, Kulkarni SK (2007) Synthesis and analysis of ZnO and CdSe nanoparticles. Pramana—J Phys 65:615–620 ISSN: 0304-4289

    Article  Google Scholar 

  • Besser PJ, Morrish AH, Searle CW (1967) Magnetocrystalline anisotropy of pure and doped hematite. Phys Rev 153:632–642

    Article  CAS  Google Scholar 

  • Bødker F, Hansen MF, Bender Koch C, Lefmann K, Mørup S (2000) Magnetic properties of hematite nanoparticles. Phys Rev 61:6826–6838

    Article  Google Scholar 

  • Bowles J, Jackson M, Banerjee SK (2010) Interpretation of low-temperature data Part II: the Hematite Morin transition. IRM Quart 20:1–10 ISSN: 2152-1972

    Google Scholar 

  • Caro P (1998) Rare earths in luminescence. In: Saez R, Caro PI (eds) Rare earths. Editorial Complutense, Madrid. ISBN 978-84-89784-33-8

    Google Scholar 

  • Chikazumi S (1997) Physics of ferromagnetism 1997 edition, 1997th edn. Oxford University Press, Oxford. ISBN 0-19-851776-9

    Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses, 2nd, Completely Revised and Extended Edition edn. Wiley, New York. ISBN 3-527-30274-3

    Book  Google Scholar 

  • Cullity BD, Graham CD (2008) Introduction to magnetic materials, 2nd edn. IEEE Press, Wiley, Hoboken. doi:10.1002/9780470386323

    Book  Google Scholar 

  • de Boer CB, Mulleder TAT, Dekkers MJ (2001) Low-temperature behaviour of haematite: susceptibility and magnetization increase on cycling through the Morin transition. Geophys J Int 146:201–216. doi:10.1046/j.0956-540x.2001.01443.x

    Article  Google Scholar 

  • Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers., Cambridge studies in magnetism seriesCambridge University Press, Cambridge. ISBN 978-0521325145

    Book  Google Scholar 

  • Freyria FS, Barrera G, Tiberto P, Belluso E, Levy D, Saracco G, Allia P, Garrone E, Bonelli B (2013) Eu-doped α-Fe2O3 nanoparticles with modified magnetic properties. J Sol St Chem 201:302–311. doi:10.1016/j.jssc.2013.03.018

    Article  CAS  Google Scholar 

  • Jamauchi J (2008) Fundamentals of magnetism. In: Likhtenshtein GI, Jamauchi J, Nakatsuji S, Smirnov AI, Tamura R (eds) Nitroxides: applications in chemistry, biomedicine, and materials science. Willey-Vch Verlag GmbH & Co. KGaA, Weinheim. ISBN 978-3-527-31889-6

    Google Scholar 

  • Jensen J, Mackintosh AR (1991) Rare earth magnetism—structures and excitations. Clarendon Press, Oxford. ISBN 978-0198520276

    Google Scholar 

  • Jiang Z, Liu Q, Barrón V, Torrent J, Yu Y (2012) Magnetic discrimination between Al-substituted hematites synthesized by hydrothermal and thermal dehydration methods and its geological significance. J Geophys Res 117:B02102-1–B02102-15. doi:10.1029/2011JB008605

    Google Scholar 

  • Kodma RH, Berkowitz AE (2005) Surface-driven effects on the magnetic behavior of oxide nanoparticles. In: Fiorani D (ed) Surface effects in magnetic nanoparticles. Springer Science + Business Media, New York. ISBN 978-0387232799

    Google Scholar 

  • Lin X-M, Samia ACS (2006) Synthesis, assembly and physical properties of magnetic nanoparticles. J Magn Magn Mater 305:100–109. doi:10.1016/j.jmmm.2005.11.042

    Article  CAS  Google Scholar 

  • Liu Q, Barrón V, Torrent J, Qin H, Yu Y (2010) The magnetism of micro-sized hematite explained. Phys Earth Plan Inter 183:387–397. doi:10.1016/j.pepi.2010.08.008

    Article  CAS  Google Scholar 

  • Lu A-H, Salabas L, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244. doi:10.1002/anie.200602866

    Article  CAS  Google Scholar 

  • Morrish AH (1995) Canted antiferromagnetism: hematite. World Scientific, River Edge. ISBN 978-981-02-2007-5

    Book  Google Scholar 

  • Özdemir Ö, Dunlop DJ (2006) Magnetic memory and coupling between spin-canted and defect magnetism in Hematite. J Geophys Res 111:B12S03-1–B12S03-13. doi:10.1029/2006JB004555

    Google Scholar 

  • Özdemir Ö, Dunlop DJ, Berquó TS (2008) Morin transition in hematite: size dependence and thermal hysteresis. Geochem Geophys Geosyst 9:1–12. doi:10.1029/2008GC002110

    Google Scholar 

  • Smith SJ, Page K, Kim H, Campbell BJ, Boerio-Goates J, Woodfield BF (2012) Novel synthesis and structural analysis of ferrihydrite. Inorg Chem 51:6421–6424. doi:10.1021/ic300937f

    Article  CAS  Google Scholar 

  • Song H, Wang J, Chen B, Peng H, Lu S (2003) Size-dependent electronic transition rates in cubic nanocrystalline europium doped yttria. Chem Phys Lett 376:1–5. doi:10.1016/S0009-2614(03)00810-8

    Article  CAS  Google Scholar 

  • Zhao J, Huggins FE, Feng Z, Huffman GP (1994) Ferrihydrite; surface structure and its effects on phase transformation. Clays Clay Miner 42:737–746

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Allia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allia, P., Barrera, G., Bonelli, B. et al. Magnetic properties of pure and Eu-doped hematite nanoparticles. J Nanopart Res 15, 2118 (2013). https://doi.org/10.1007/s11051-013-2118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2118-z

Keywords

Navigation