Log in

A low computational complexity DOA estimation using sum/difference pattern based on DNN

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Tracking low-elevation targets over an uneven surface is challenging because of the complicated and volatile multipath signals. Multipath signals cause the amplitude and phase distortion of direct signal, which degrades the performance and generates mismatch between existing classical multipath signal and actual model. Machine learning-based methods are data-driven, they do not rely on prior assumptions about array geometries, and are expected to adapt better to array imperfections. The amplitude comparison Direction-of-Arrival (DOA) algorithm performs a few calculations, has a simple system structure, and is widely used. In this paper, an efficient DOA estimation approach based on Sum/Difference pattern is merged with deep neural network. Fully learn the potential features of the direct signal from the echo signal. In order to integrate more phase features, the covariance matrix is applied to the amplitude comparison algorithm, it can accommodate multiple snapshot signals instead of a single pulse automatically. The outputs of the deep neural network are concatenated to reconstruct a covariance matrix for DOA estimation. Moreover, the superiority in computational complexity and generalization of proposed method are proved by simulation experiments compared with state-of-the-art physics-driven and data-driven methods. Field data sets acquired from a VHF array radar are carried out to verify the proposed method satisfies practicability in the severe multipath effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61971323), the Fundamental Research Funds for the Central Universities and the Innovation Fund of **dian University. The authors sincerely express their gratitude to anonymous reviewers and the editors for their helpful and constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baixiao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Chen, B. & **ang, H. A low computational complexity DOA estimation using sum/difference pattern based on DNN. Multidim Syst Sign Process 34, 205–225 (2023). https://doi.org/10.1007/s11045-022-00861-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-022-00861-9

Keywords

Navigation