Log in

Comparative characterization of the viscoelastic properties of additive manufacturing polymers

  • Research
  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The recent availability of a wide range of additively manufactured materials has facilitated the translation from prototype-limited to application-ready 3D printed components. As such, additively manufactured materials deployed in dynamic environments require extensive characterization to elucidate and optimize performance. This research evaluates the dynamic response of fused filament fabrication and vat photopolymerization printed polymers as a function of temperature. Dynamic mechanical analysis is used to extract the viscoelastic properties of several generations of samples exhibiting a range of thermomechanical behavior, highlighting the stiffness and dam** characteristics. A modified stiffness–temperature model supports the experimental characterization and provides additional insight concerning the molecular motion occurring over each thermal transition. The insights from the analysis were collated into a case study that leverages their dynamic characteristics in a multimaterial application. The outcomes from this research assimilate a framework that defines the temperature operating range and broadens the design envelope for these additive manufacturing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available upon request to the corresponding author.

References

  • Adibeig, M.R., et al.: Quasi-static simulation and fatigue life estimation of fused filament fabrication of polylactic acid specimens using finite element method. J. Manuf. Process. 106, 202–213 (2023)

    Article  Google Scholar 

  • Ahn, S.H., et al.: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototy** J. 8(4), 248–257 (2002)

    Article  Google Scholar 

  • Alarifi, I.M.: Investigation of the dynamic mechanical analysis and mechanical response of 3D printed nylon carbon fiber composites with different build orientation. Polym. Compos. 43(8), 5353–5363 (2022)

    Article  Google Scholar 

  • Alasfar, R.H., et al.: A review on the modeling of the elastic modulus and yield stress of polymers and polymer nanocomposites: effect of temperature, loading rate and porosity. Polymers 14(3), 360 (2022)

    Article  Google Scholar 

  • Anandhan, S., et al.: Novel thermoplastic elastomers based on acrylonitrile-butadiene-styrene terpolymer (ABS) from waste computer equipment and nitrile rubber. Rubber Chem. Technol. 76(5), 1145–1163 (2003)

    Article  Google Scholar 

  • Anastasio, R., et al.: Characterization of ultraviolet-cured methacrylate networks: from photopolymerization to ultimate mechanical properties. Macromolecules 52(23), 9220–9231 (2019)

    Article  Google Scholar 

  • Andrady, A.L., et al.: Effects of increased solar ultraviolet radiation on materials. J. Photochem. Photobiol. B, Biol. 46(1), 96–103 (1998)

    Article  Google Scholar 

  • Andrady, A., et al.: Effects of UV radiation on natural and synthetic materials. Photochem. Photobiol. Sci. 22, 1–26 (2023)

    Article  Google Scholar 

  • Ashby, M.F., Jones, D.R.H.: An Introduction to Microstructures, Processing and Design. No Title (1986)

    Google Scholar 

  • Bakhtiari, H., Aamir, M., Tolouei-Rad, M.: Effect of 3D printing parameters on the fatigue properties of parts manufactured by fused filament fabrication: a review. Appl. Sci. 13(2), 904 (2023)

    Article  Google Scholar 

  • Boyer, R.F.: The relation of transition temperatures to chemical structure in high polymers. Rubber Chem. Technol. 36(5), 1303–1421 (1963)

    Article  Google Scholar 

  • Brans, K.: 3D printing, a maturing technology. In: IFAC Proceedings Volumes, vol. 46, pp. 468–472 (2013)

    Google Scholar 

  • Brighenti, R., et al.: Mechanical characterization of additively manufactured photopolymerized polymers. Mech. Adv. Mat. Struct. 30(9), 1853–1864 (2023)

    Article  Google Scholar 

  • Camelio, P., et al.: Glass transition temperature calculations for styrene derivatives using the energy, volume, and mass model. Macromolecules 31(7), 2305–2311 (1998)

    Article  Google Scholar 

  • Casado, J., et al.: 3D printable hybrid acrylate-epoxy dynamic networks. Eur. Polym. J. 173, 111256 (2022)

    Article  Google Scholar 

  • Chantarapanich, N., et al.: Study of the mechanical properties of photo-cured epoxy resin fabricated by stereolithography process. Songklanakarin J. Sci. Technol. 35(1) (2013)

  • Chhikara, K., et al.: Development and effectiveness testing of a novel 3D-printed multi-material orthosis in nurses with plantar foot pain. Prosthesis 5(1), 73–87 (2023)

    Article  Google Scholar 

  • Christensen, R., Waals, F.: Effective stiffness of randomly oriented fibre composites. J. Compos. Mater. 6(4), 518–532 (1972)

    Article  Google Scholar 

  • Cotten, G., Schneider, W.: Transition temperatures in copolymers of acrylonitrile. Kolloid-Z. Z. Polym. 192, 16–21 (1963)

    Article  Google Scholar 

  • Cuan-Urquizo, E., et al.: Characterization of the mechanical properties of FFF structures and materials: a review on the experimental, computational and theoretical approaches. Materials 12(6), 895 (2019)

    Article  Google Scholar 

  • Curtis, P., Bader, M., Bailey, J.: The stiffness and strength of a polyamide thermoplastic reinforced with glass and carbon fibres. J. Mater. Sci. 13, 377–390 (1978)

    Article  Google Scholar 

  • Dakshinamurthy, D., Gupta, S.: A study on the influence of process parameters on the viscoelastic properties of ABS components manufactured by FDM process. J. Inst. Eng. (India), Ser. C 99(2), 133–138 (2018)

    Article  Google Scholar 

  • Deng, X., et al.: Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials 11(2), 216 (2018)

    Article  Google Scholar 

  • Desai, S.M., Sonawane, R.Y., More, A.P.: Thermoplastic polyurethane for three-dimensional printing applications: a review. Polym. Adv. Technol. 34(7), 2061–2082 (2023)

    Article  Google Scholar 

  • Dizon, J.R.C., et al.: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44–67 (2018)

    Google Scholar 

  • Dulieu-Barton, J., Fulton, M.: Mechanical properties of a typical stereolithography resin. Strain 36(2), 81–87 (2000)

    Article  Google Scholar 

  • Feng, J., et al.: Revealing molecular mechanisms of colorless transparent polyimide films under photo-oxidation. Polym. Degrad. Stab. 210, 110294 (2023)

    Article  Google Scholar 

  • Forster, M.J.: Glass transition temperature of Nylon 6. Tex. Res. J. 38(5), 474–480 (1968)

    Article  Google Scholar 

  • Frick, A., Rochman, A.: Characterization of TPU-elastomers by thermal analysis (DSC). Polym. Test. 23(4), 413–417 (2004)

    Article  Google Scholar 

  • Gómez-García, D., et al.: Machinability of 3D printed peek reinforced with short carbon fiber. Comp. Part C Open Access 12, 100387 (2023)

    Article  Google Scholar 

  • Gordon, G.A.: Glass transition in nylons. J. Polym. Sci., Part A-2, Polym. Phys. 9(9), 1693–1702 (1971)

    Article  Google Scholar 

  • Greco, R., Nicolais, L.: Glass transition temperature in nylons. Polymer 17(12), 1049–1053 (1976)

    Article  Google Scholar 

  • Gunter, E.: Designing with Plastics. Hanser Verlag, Munich (2006)

    Google Scholar 

  • Gurjar, D., Sharma, S., Sarkar, M.: A review on testing methods of recycled acrylonitrile butadiene-styrene. In: Materials Today: Proceedings, vol. 5, pp. 28296–28304 (2018)

    Google Scholar 

  • Hague, R., et al.: Materials analysis of stereolithography resins for use in rapid manufacturing. J. Mater. Sci. 39(7), 2457–2464 (2004)

    Article  Google Scholar 

  • Huynh, N.U., et al.: Property-map of epoxy-treated and as-printed polymeric additively manufactured materials. Int. J. Mech. Sci. 181, 105767 (2020)

    Article  Google Scholar 

  • Kim, D.S., Seo, W.H.: Ultraviolet-curing behavior and mechanical properties of a polyester acrylate resin. J. Appl. Polym. Sci. 92(6), 3921–3928 (2004)

    Article  Google Scholar 

  • Kim, K., et al.: 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens. Actuators A, Phys. 263, 493–500 (2017)

    Article  Google Scholar 

  • Kraus, G., Childers, C., Gruver, J.: Properties of random and block copolymers of butadiene and styrene. I. Dynamic properties and glassy transition temperatures. J. Appl. Polym. Sci. 11(8), 1581–1591 (1967)

    Article  Google Scholar 

  • Kuenstler, A.S., et al.: Vat photopolymerization additive manufacturing of tough, fully recyclable thermosets. ACS Appl. Mater. Interfaces 15(8), 11111–11121 (2023)

    Article  Google Scholar 

  • Kumar, S., et al.: Fused filament fabrication: a comprehensive review. J. Thermoplast. Compos. Mater. 36(2), 794–814 (2023)

    Article  Google Scholar 

  • Lakes, R.S.: Viscoelastic Solids (1998). CRC Press, Boca Raton (2017)

    Google Scholar 

  • Lantean, S., et al.: Magnetoresponsive devices with programmable behavior using a customized commercial stereolithographic 3D printer. Adv. Mater. Technol. 7(11), 2200288 (2022)

    Article  Google Scholar 

  • Laureto, J.J., Pearce, J.M.: Anisotropic mechanical property variance between ASTM D638-14 type I and type IV fused filament fabricated specimens. Polym. Test. 68, 294–301 (2018)

    Article  Google Scholar 

  • Ligon, S.C., et al.: Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117(15), 10212–10290 (2017)

    Article  Google Scholar 

  • Mahieux, C.A., Reifsnider, K.L.: Property modeling across transition temperatures in polymers: a robust stiffness–temperature model. Polymer 42(7), 3281–3291 (2001)

    Article  Google Scholar 

  • Malley, S., Newacheck, S., Youssef, G.: Additively manufactured multifunctional materials with magnetoelectric properties. Addit. Manuf. 47, 102239 (2021)

    Google Scholar 

  • Menard, K.P., Menard, N.: Dynamic Mechanical Analysis. CRC Press, Boca Raton (2020)

    Book  Google Scholar 

  • Miller, M.L.: The structure of polymers (1966). (No Title)

  • Naik, D.L., Kiran, R.: On anisotropy, strain rate and size effects in vat photopolymerization based specimens. Additive Manufacturing 23, 181–196 (2018)

    Article  Google Scholar 

  • Namvar, N., et al.: Bio-inspired design, modeling, and 3D printing of lattice-based scale model scooter decks. Int. J. Adv. Manuf. Technol. 126(7), 2887–2903 (2023)

    Article  Google Scholar 

  • Naveen, R., et al.: An investigation on effect of ultraviolet (UV) rays on mechanical properties of epoxy laminates. Mater. Today Proc. (2023)

  • Nugraha, A.D., Syahril, M., Muflikhun, M.A.: Excellent performance of hybrid model manufactured via additive manufacturing process reinforced with GFRP for sport climbing equipment. Heliyon 9(3), e14706 (2023)

    Article  Google Scholar 

  • Onwubolu, G.C., Rayegani, F.: Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process. Int. J. Manuf. Eng. 2014, 1–13 (2014)

    Google Scholar 

  • Pachauri, S., Gupta, N.K., Gupta, A.: Influence of 3D printing process parameters on the mechanical properties of polylactic acid (PLA) printed with fused filament fabrication: experimental and statistical analysis. Int. J. Interact. Des. Manuf., 1–19 (2023)

  • Patterson, A.E., et al.: Fracture testing of polymer materials processed via fused filament fabrication: a survey of materials, methods, and design applications. Prog. Addit. Manuf. 6(4), 765–780 (2021)

    Article  MathSciNet  Google Scholar 

  • Platzer, N.: Progress in polymer engineering. Ind. Eng. Chem. 61(5), 10–30 (1969)

    Article  Google Scholar 

  • Prashar, G., Vasudev, H., Bhuddhi, D.: Additive manufacturing: expanding 3D printing horizon in industry 4.0. Int. J. Interact. Des. Manuf. 17(5), 2221–2235 (2023)

    Article  Google Scholar 

  • Ramya, A., Vanapalli, S.L.: 3D printing technologies in various applications. Int. J. Mech. Eng. Technol. 7(3), 396–409 (2016)

    Google Scholar 

  • Randhawa, K.S., Patel, A.: The effect of environmental humidity/water absorption on tribo-mechanical performance of polymers and polymer composites–a review. Ind. Lubr. Tribol. 73(9), 1146–1158 (2021)

    Article  Google Scholar 

  • Reich, M.J., et al.: Mechanical properties and applications of recycled polycarbonate particle material extrusion-based additive manufacturing. Materials 12(10), 1642 (2019)

    Article  Google Scholar 

  • Riechert, V., et al.: Rheological properties and UV photo-oxidation of montmorillonite-filled random propylene–ethylene copolymers. Polym. Bull. 80(4), 3981–4004 (2023)

    Article  Google Scholar 

  • Rodríguez, J.F., Thomas, J.P., Renaud, J.E.: Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation. Rapid Prototy** J. 7(3), 148–158 (2001)

    Article  Google Scholar 

  • Sabatini, F., et al.: A thermal analytical study of LEGO® bricks for investigating light-stability of ABS. Polymers 15(15), 3267 (2023)

    Article  Google Scholar 

  • Sărăndan, S.O.: Contributions regarding the development of cellular structures destined for sports equipment (2022)

  • Schwaar, C.: 3D Printed Shoes: The Cream of the Crop of 2023 (2023)

    Google Scholar 

  • Senna, S.: Design, 3D printing and characterisation of bending-dominated lattice structures for energy absorption in sports equipment (2019)

  • Shojib Hossain, M., et al.: Improving tensile mechanical properties of FDM-manufactured specimens via modifying build parameters. In: 2013 International Solid Freeform Fabrication Symposium (2013). University of Texas at Austin

    Google Scholar 

  • Shojib Hossain, M., et al.: Improved mechanical properties of fused deposition modeling-manufactured parts through build parameter modifications. J. Manuf. Sci. Eng. 136(6), 061002 (2014)

    Article  Google Scholar 

  • Silver, F.H., Gonzalez-Mercedes, M., Mesica, A.: A rapid method to noninvasively measure the viscoelastic properties of synthetic polymers using mechanical vibrations and photonics. Photonics 9(12), 925 (2022)

    Article  Google Scholar 

  • Sola, A., et al.: Open challenges in tensile testing of additively manufactured polymers: a literature survey and a case study in fused filament fabrication. Polym. Test. 117, 107859 (2023)

    Article  Google Scholar 

  • Song, Y., et al.: An overview of selective laser sintering 3D printing technology for biomedical and sports device applications: processes, materials, and applications. Opt. Laser Technol. 171, 110459 (2024)

    Article  Google Scholar 

  • Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J. Adv. Res. 3(1), 81–90 (2012)

    Article  Google Scholar 

  • Stribeck, N., et al.: Structure and mechanical properties of an injection-molded thermoplastic polyurethane as a function of melt temperature. Macromol. Chem. Phys. 212(20), 2234–2248 (2011)

    Article  Google Scholar 

  • Svetlana, T., et al.: Flexural quasi-static and fatigue behaviours of fused filament deposited PA6 and PA12 polymers. Int. J. Adv. Manuf. Technol. 117(7), 2041–2048 (2021)

    Article  Google Scholar 

  • Tan, L.J., Zhu, W., Zhou, K.: Recent progress on polymer materials for additive manufacturing. Adv. Funct. Mater. 30(43), 2003062 (2020)

    Article  Google Scholar 

  • Uddin, M.S., et al.: Evaluating mechanical properties and failure mechanisms of fused deposition modeling acrylonitrile butadiene styrene parts. J. Manuf. Sci. Eng. 139(8), 081018 (2017)

    Article  Google Scholar 

  • Uddin, K.Z., et al.: Gradient optimization of multi-layered density-graded foam laminates for footwear material design. J. Biomech. 109, 109950 (2020)

    Article  Google Scholar 

  • Vidakis, N., Petousis, M., Kechagias, J.: A comprehensive investigation of the 3D printing parameters’ effects on the mechanical response of polycarbonate in fused filament fabrication. Prog. Addit. Manuf. 7(4), 713–722 (2022)

    Article  Google Scholar 

  • Wang, Y., et al.: Acoustic-assisted 3D printing based on acoustofluidic microparticles patterning for conductive polymer composites fabrication. Addit. Manuf. 60, 103247 (2022)

    Google Scholar 

  • Wineman, A.S., Rajagopal, K.R.: Mechanical Response of Polymers: An Introduction. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Wittbrodt, B., Pearce, J.M.: The effects of PLA color on material properties of 3-D printed components. Addit. Manuf. 8, 110–116 (2015)

    Google Scholar 

  • **ang, Y., et al.: Mechanical characterization and constitutive modeling of visco-hyperelasticity of photocured polymers. Addit. Manuf. 36, 101511 (2020)

    Google Scholar 

  • Yadav, A., et al.: Fused filament fabrication: a state-of-the-art review of the technology, materials, properties and defects. Int. J. Interact. Des. Manuf. 17(6), 2867–2889 (2023)

    Article  Google Scholar 

  • Yanagihara, Y., et al.: Relationship between modulus and structure of annealed thermoplastic polyurethane. Mater. Today Commun. 2, e9–e15 (2015)

    Article  Google Scholar 

  • Yankin, A., et al.: Optimization of printing parameters to enhance tensile properties of ABS and nylon produced by fused filament fabrication. Polymers 15(14), 3043 (2023)

    Article  Google Scholar 

  • Yin, Z.N., Fan, L.F., Wang, T.J.: Experimental investigation of the viscoelastic deformation of PC, ABS and PC/ABS alloys. Mater. Lett. 62(17), 2750–2753 (2008)

    Article  Google Scholar 

  • Yousif, E., et al.: Photo-physical and morphological study of polymers: a review. Phys. Chem. Res. 11(2), 409–424 (2023)

    Google Scholar 

  • Youssef, G.: Applied Mechanics of Polymers: Properties, Processing, and Behavior. Elsevier, Amsterdam (2021)

    Google Scholar 

  • Youssef, G., et al.: Multifunctional fused deposition modeled acrylonitrile butadiene styrene-based structures with embedded conductive channels. J. Eng. Mater. Technol. 143(1), 011001 (2021)

    Article  Google Scholar 

  • Zahir Uddin, K., et al.: In-plane Density Gradation of Shoe Midsoles for Optimized Cushioning Performance (2024). e-prints, ar**v:2401.06940

  • Zaldivar, R., et al.: Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-printed ULTEM® 9085 material. Addit. Manuf. 13, 71–80 (2017)

    Google Scholar 

  • Zolfagharian, A., et al.: Custom shoe sole design and modeling toward 3D printing. Int. J. Bioprinting 7(4) (2021)

Download references

Acknowledgements

The authors acknowledge the support by the National Science Foundation under Grant No. 2035663. The authors are also grateful for internal funding from San Diego State University. Funding from the Department of Defense (W911NF1410039, W911NF1810477, and W911NF2210199) is also acknowledged. Support from San Diego State University is also acknowledged.

Funding

The research leading to these results is funded by the National Science Foundation under Grant No. 2035663 and from the Department of Defense (W911NF1410039, W911NF1810477, and W911NF2210199). The authors are also grateful for internal funding and support from San Diego State University. The authors have no competing interests to declare.

Author information

Authors and Affiliations

Authors

Contributions

All authors were responsible for writing (review and editing), data curation, formal analysis, investigation, visualization, figure preparation, and methodology. G.Y. is responsible for writing the original draft, conceptualization, project administration, resources, and funding acquisition.

Corresponding author

Correspondence to George Youssef.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Chen, M. & Youssef, G. Comparative characterization of the viscoelastic properties of additive manufacturing polymers. Mech Time-Depend Mater (2024). https://doi.org/10.1007/s11043-024-09710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11043-024-09710-7

Keywords

Navigation