Log in

Unlocking the language barrier: A Journey through Arabic machine translation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Arabic Machine Translation (MT) has gained considerable attention from the research community due to the widespread use of Arabic as one of the world’s major languages. While significant progress has been made in this field, the quality of Arabic MT systems still lags behind that of some other languages. This survey paper aims to provide a comprehensive overview of Arabic MT by addressing its challenges, highlighting previous research studies, and discussing the field’s current state. The survey begins by introducing the characteristics of the Arabic language and the specific challenges it poses for translation. It then summarises the key research studies and explores the available tools and resources for building and evaluating Arabic MT systems. Additionally, the survey examines the strengths and weaknesses of existing techniques used in Arabic-English (and English-Arabic) machine translation, focusing on neural machine translation (NMT) approaches. By comparing different NMT methods and addressing linguistic and technical challenges, this paper offers valuable insights for researchers and professionals in Arabic MT. The findings, critiques, and open issues presented in this survey can serve as a foundation for further research and improvement in Arabic MT, providing a valuable resource for those interested in advancing the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

Data sharing does not apply to this article as no datasets were generated or analysed during the current study.

Notes

  1. https://scopus.com/

  2. https://arxiv.org/

  3. https://www.sciencedirect.com/

  4. https://ieeexplore.ieee.org/Xplore/home.jsp

  5. https://dl.acm.org/

  6. https://www.connectedpapers.com/

  7. https://www.researchgate.net/

  8. https://paperswithcode.com/

  9. https://papers.ssrn.com/

  10. https://www.academia.edu/

  11. https://scholar.google.com/

References

  1. Qun L, **aojun Z (2014) Machine translation: general. In: Routledge Encyclopedia of Translation Technology, Routledge, pp. 105–119

  2. Ranathunga S, Lee E-SA, Prifti Skenduli M, Shekhar R, Alam M, Kaur R (2023) Neural machine translation for low-resource languages: A survey. ACM Comput Surv 55(11):1–37

    Article  Google Scholar 

  3. Aransa W (2015) Statistical machine translation of the arabic language. PhD thesis, Le Mans

  4. Shalhoub-Awwad Y, Leikin M (2016) The lexical status of the root in processing morphologically complex words in arabic. Sci Stud Read 20(4):296–310

    Article  Google Scholar 

  5. Zakraoui J, Saleh M, Al-Maadeed S, Alja’am, J.M, (2021) Arabic machine translation: A survey with challenges and future directions. IEEE Access 9:161445–161468

  6. Alqudsi A, Omar N, Shaker K (2014) Arabic machine translation: a survey. Artif Intell Rev 42:549–572

    Article  Google Scholar 

  7. Alrajeh A (2018) A recipe for arabic-english neural machine translation. ar**v preprint ar**v:1808.06116

  8. Darwish K, Habash N, Abbas M, Al-Khalifa H, Al-Natsheh HT, Bouamor H, Bouzoubaa K, Cavalli-Sforza V, El-Beltagy SR, El-Hajj W et al (2021) A panoramic survey of natural language processing in the arab world. Commun ACM 64(4):72–81

    Article  Google Scholar 

  9. Ameur MSH, Meziane F, Guessoum A (2020) Arabic machine translation: A survey of the latest trends and challenges. Computer Science Review. 38:100305

    Article  Google Scholar 

  10. Babaali B (2022) Arabic machine translation: a panoramic survey. Available at SSRN 4312742

  11. Alsohybe NT, Dahan NA, Ba-Alwi FM (2017) Machine-translation history and evolution: Survey for arabic-english translations. ar**v preprint ar**v:1709.04685

  12. Almanea MM (2021) Automatic methods and neural networks in arabic texts diacritization: a comprehensive survey. IEEE Access 9:145012–145032

    Article  Google Scholar 

  13. Ryding KC (2014) Arabic: A Linguistic Introduction. Cambridge University Press

  14. Sovinaz S, Rusady AT (2023) Uncovering arabic language errors in conversational context: an analysis of derivation and inflection aspects. ALSINATUNA 8(2):173–188

    Article  Google Scholar 

  15. Bashir MH, Azmi AM, Nawaz H, Zaghouani W, Diab M, Al-Fuqaha A, Qadir J (2023) Arabic natural language processing for qur’anic research: A systematic review. Artificial Intelligence Review 56(7):6801–6854

  16. Ech-Charfi A (2023) Word frequency and lexical coverage in english and arabic. Journal of Applied Language and Culture Studies 6(3):1–19

    Google Scholar 

  17. Issa I (2023) Morphological complexity in arabic spelling and its implication for cognitive processing. J Psycholinguist Res 52(1):331–357

    Article  Google Scholar 

  18. Habash NY (2022) Introduction to Arabic Natural Language Processing, Springer Nature

  19. Habash N, Rambow O (2007) Arabic diacritization through full morphological tagging. In: Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers, pp. 53–56

  20. Azmi AM, Almajed RS (2015) A survey of automatic arabic diacritization techniques. Nat Lang Eng 21(3):477–495

    Article  Google Scholar 

  21. aljazeera.net: . https://bit.ly/3YFoscS (2011)

  22. Kroeger PR (2023) Analyzing Meaning: An Introduction to Semantics and Pragmatics., Language Science Press

  23. Polysemy: Homonymy and Polysemy in Arabic Language. https://bit.ly/45wGCjb. Accessed: 2023-07-20 (2016)

  24. Lu W (2023) The semantic meaning of verb+ particle construction based on emergent metaphor theory. International Journal of Education and Humanities 9(3):29–32

    Article  Google Scholar 

  25. Masini F (2019) Multi-Word Expressions and Morphology. Oxford University Press. https://doi.org/10.1093/acrefore/9780199384655.013.611. https://oxfordre.com/linguistics/view/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-e-611

  26. Kordoni V, Simova I (2014) Multiword expressions in machine translation. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), pp. 1208–1211. European Language Resources Association (ELRA), Reykjavik, Iceland. http://www.lrec-conf.org/proceedings/lrec2014/pdf/723_Paper.pdf

  27. Sag IA, Baldwin T, Bond F, Copestake A, Flickinger D (2002) Multiword expressions: A pain in the neck for nlp. In: Gelbukh A (ed) Computational Linguistics and Intelligent Text Processing. Springer, Berlin, Heidelberg, pp 1–15

    Google Scholar 

  28. Idioms (2023) Very Common Arabic Idioms, Proverbs & Similes. https://www.saioi.net/blog/very-common-arabic-idioms-proverbs-similes

  29. Constant M, Eryiǧit G, Monti J, Plas L, Ramisch C, Rosner M, Todirascu A (2017) Survey: Multiword expression processing: A Survey. Comput Linguist 43(4):837–892. https://doi.org/10.1162/COLI_a_00302

  30. LightShade: - Light shade translation into English. https://bit.ly/3YDW8aS (2023)

  31. Simon E (2013) Approaches to hungarian named entity recognition. PhD thesis, PhD School in Cognitive Sciences, Budapest University of Technology and Economics

  32. Wang S, Sun X, Li X, Ouyang R, Wu F, Zhang T, Li J, Wang G (2023) Gpt-ner: Named entity recognition via large language models. ar**v preprint ar**v:2304.10428

  33. Qu X, Gu Y, **a Q, Li Z, Wang Z, Huai B (2023) A survey on arabic named entity recognition: Past, recent advances, and future trends. ar**v preprint ar**v:2302.03512

  34. Shaalan K (2014) A survey of arabic named entity recognition and classification. Comput Linguist 40(2):469–510

    Article  Google Scholar 

  35. Hadj Ameur M, Meziane F, Guessoum A (2017) Arabic Machine Transliteration Using an Attention-based Encoder-Decoder Model. Elsevier, Dubai. https://doi.org/10.1016/j.procs.2017.10.120

  36. Torregrosa D, Pasricha N, Masoud M, Chakravarthi BR, Alonso J, Casas N, Arcan M (2019) Leveraging rule-based machine translation knowledge for under-resourced neural machine translation models. In: Proceedings of Machine Translation Summit XVII: Translator, Project and User Tracks, pp. 125–133

  37. MT: Machine Translation: Everything You Need to Know. https://lilt.com/machine-translation (2023)

  38. Sethi N, Dev A, Bansal P, Sharma DK, Gupta D (2023) A pragmatic analysis of machine translation techniques for preserving the authenticity of the sanskrit language. ACM Transactions on Asian and Low-Resource Language Information Processing

  39. Gemechu E, Kanagachidambaresan G (2023) Text-text neural machine translation: A survey. Optical Memory and Neural Networks 32(2):59–72

    Article  Google Scholar 

  40. Dugonik J, Sepesy Maučec M, Verber D, Brest J (2023) Reduction of neural machine translation failures by incorporating statistical machine translation. Mathematics 11(11):2484

    Article  Google Scholar 

  41. Laskar SR, Khilji AFUR, Pakray P, Bandyopadhyay S (2022) Improved neural machine translation for low-resource english-assamese pair. Journal of Intelligent & Fuzzy Systems 42(5):4727–4738

    Article  Google Scholar 

  42. Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, pp. 127–133. https://aclanthology.org/N03-1017

  43. Yano K, Utsumi A (2023) Pipeline signed japanese translation using pbsmt and transformer in a low-resource setting. Journal of Natural Language Processing 30(1):30–62

    Article  Google Scholar 

  44. Oo TM, Thu YK, Soe KM, Supnithi T (2020) Statistical machine translation between myanmar and myeik. PhD thesis, MERAL Portal

  45. Mondal SK, Zhang H, Kabir HD, Ni K, Dai HN (2023) Machine translation and its evaluation: a study. Artificial Intelligence Review, 1–90

  46. Wang, H., Wu, H., He, Z., Huang, L., Church, K.W (2021) Progress in machine translation. Engineering

  47. Yang S, Wang Y, Chu X (2020) A survey of deep learning techniques for neural machine translation. ar**v preprint ar**v:2002.07526

  48. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. CoRR. abs/1706.03762 https://arxiv.org/abs/1706.03762

  49. Hochreiter S, Schmidhuber J (1997) Long Short-Term Memory. Neural Comput. 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf

  50. Cho K, Merrienboer B, Gülçehre Ç, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR. abs/1406.1078 https://arxiv.org/abs/1406.10781406.1078

  51. Bensalah N, Ayad H, Adib A, Ibn El Farouk A (2021) Lstm vs. gru for arabic machine translation. In: Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020) 12, pp. 156–165. Springer

  52. Bensalah N, Ayad H, Adib A, Ibn El Farouk A (2022) Cran: an hybrid cnn-rnn attention-based model for arabic machine translation. In: Networking, Intelligent Systems and Security: Proceedings of NISS 2021, pp. 87–102. Springer

  53. Aljohany DA, Al-Barhamtoshy HM, Abukhodair FA (2022) Arabic machine translation (armt) based on lstm with attention mechanism architecture. In: 2022 20th International Conference on Language Engineering (ESOLEC), vol. 20, pp. 78–83. IEEE

  54. Jian L, **ang H, Le G, et al. (2022) Lstm-based attentional embedding for english machine translation. Scientific Programming 2022

  55. Ramadhan TI, Ramadhan NG, Supriatman A (2022) Implementation of neural machine translation for english-sundanese language using long short term memory (lstm). Building of Informatics, Technology and Science (BITS) 4(3):1438–1446

  56. Hamed H, Helmy A, Mohammed A (2022) Holy quran-italian seq2seq machine translation with attention mechanism. In: 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), pp. 11–20. IEEE

  57. Dobilas S (2022) LSTM Recurrent Neural Networks - How to Teach a Network to Remember the Past. https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e

  58. Dobilas S (2022) GRU Recurrent Neural Networks - A Smart Way to Predict Sequences in Python. https://towardsdatascience.com/gru-recurrent-neural-networks-a-smart-way-to-predict-sequences-in-python-80864e4fe9f6

  59. Gamal D, Alfonse M, Jiménez-Zafra SM, Aref M (2022) Survey of arabic machine translation, methodologies, progress, and challenges. In: 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), pp. 378–383. IEEE

  60. Zhang B, **ong D, **e J, Su J (2020) Neural machine translation with gru-gated attention model. IEEE transactions on neural networks and learning systems 31(11):4688–4698

    Article  Google Scholar 

  61. Corallo L, Li G, Reagan K, Saxena A, Varde AS, Wilde B (2022) A framework for german-english machine translation with gru rnn. In: EDBT/ICDT Workshops

  62. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  63. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. CoRR. abs/1706.03762 1706.03762

  64. Parikh, A., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2249–2255. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1244 . https://aclanthology.org/D16-1244

  65. Stahlberg F (2020) Neural machine translation: A review. Journal of Artificial Intelligence Research 69:343–418

    Article  MathSciNet  Google Scholar 

  66. Habash N, Dorr B, Monz C (2009) Symbolic-to-statistical hybridization: extending generation-heavy machine translation. Mach Transl 23:23–63

    Article  Google Scholar 

  67. Och FJ, Tillmann C, Ney H (1999) Improved alignment models for statistical machine translation. In: 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora

  68. **a F, McCord MC (2004) Improving a statistical mt system with automatically learned rewrite patterns. In: COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics, pp. 508–514

  69. Groves D, Way A (2005) Hybrid data-driven models of machine translation. Mach Transl 19:301–323

    Article  Google Scholar 

  70. Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota. https://doi.org/10.18653/v1/N19-1423. https://aclanthology.org/N19-1423

  71. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ (2020) Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research 21(1):5485–5551

    MathSciNet  Google Scholar 

  72. Costa-jussà MR, Cross J, Çelebi O, Elbayad M, Heafield K, Heffernan K, Kalbassi E, Lam J, Licht D, Maillard J, et al. (2022) No language left behind: Scaling human-centered machine translation. ar**v preprint ar**v:2207.04672

  73. Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Stoyanov V, Zettlemoyer L (2019) BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. CoRR. abs/1910.13461 https://arxiv.org/abs/1910.13461

  74. Antoun W, Baly F, Hajj H (2020) Arabert: Transformer-based model for arabic language understanding. ar**v preprint ar**v:2003.00104

  75. Abdelali A, Darwish K, Durrani N, Mubarak H (2016) Farasa: A fast and furious segmenter for Arabic. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pp. 11–16. Association for Computational Linguistics, San Diego, California. https://doi.org/10.18653/v1/N16-3003. https://aclanthology.org/N16-3003

  76. Kudo T (2018) Subword regularization: Improving neural network translation models with multiple subword candidates. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 66–75. Association for Computational Linguistics, Melbourne, Australia. https://doi.org/10.18653/v1/P18-1007. https://aclanthology.org/P18-1007

  77. Jacky (2020) Understanding SentencePiece ([Under][Standing][_Sentence][Piece]. https://colabdoge.medium.com/understanding-sentencepiece-under-standing-sentence-piece-ac8da59f6b08 Medium blog link

  78. Nagoudi, E.M.B., Elmadany, A., Abdul-Mageed, M.: AraT5: Text-to-text transformers for Arabic language generation. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 628–647. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.47. https://aclanthology.org/2022.acl-long.47

  79. Freitag M, Al-Onaizan Y (2017) Beam search strategies for neural machine translation. CoRR. abs/1702.01806 https://arxiv.org/abs/1702.018061702.01806

  80. Liu Y, Gu J, Goyal N, Li X, Edunov S, Ghazvininejad M, Lewis M, Zettlemoyer L (2020) Multilingual denoising pre-training for neural machine translation. CoRR. abs/2001.08210 https://arxiv.org/abs/2001.08210

  81. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. CoRR. abs/1409.3215 https://arxiv.org/abs/1409.3215

  82. Knowles R, Sanchez-Torron M, Koehn P (2019) A user study of neural interactive translation prediction. Mach Transl 33:135–154

    Article  Google Scholar 

  83. Xue L, Constant N, Roberts A, Kale M, Al-Rfou R, Siddhant A, Barua A, Raffel C (2020) mt5: A massively multilingual pre-trained text-to-text transformer. ar**v preprint ar**v:2010.11934

  84. Chi Z, Dong L, Ma S, Huang S, Mao X, Huang H, Wei F (2021) mt6: Multilingual pretrained text-to-text transformer with translation pairs. CoRR. abs/2104.08692 https://arxiv.org/abs/2104.08692

  85. Chalabi A (2002) Sakhr arabic-english computer-aided translation system. In: Machine Translation and the Information Soup: Third Conference of the Association for Machine Translation in the Americas AMTA’98 Langhorne, PA, USA, October 28–31, 1998 Proceedings, pp. 518–521. Springer

  86. Al-mutarjim: Al-Mutarjim Al-Arabey download page. https://www.atasoft.com/documents/SUB_60.html

  87. Systran (2023) Machine translations for personal, business and enterprise usage. https://www.systransoft.com/lp/machine-translation/. Accessed: 2023-05-08

  88. Nagoudi EMB, Elmadany A, Abdul-Mageed M (2022) Turjuman: A public toolkit for neural arabic machine translation. ar**v preprint ar**v:2206.03933

  89. Tiedemann J (2012) Parallel data, tools and interfaces in OPUS. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12), pp. 2214–2218. European Language Resources Association (ELRA), Istanbul, Turkey. http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf

  90. Turjuman (2022) Turjuman release on Github. https://github.com/UBC-NLP/turjuman. Accessed: 2023-06-08

  91. Qi Y, Sachan DS, Felix M, Padmanabhan SJ, Neubig G (2018) When and why are pre-trained word embeddings useful for neural machine translation? ar**v preprint ar**v:1804.06323

  92. Ziemski M, Junczys-Dowmunt M, Pouliquen B (2016) The united nations parallel corpus v1. 0. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pp. 3530–3534

  93. Nuez Ezquerra A (2018) Implementing chatbots using neural machine translation techniques. B.S. thesis, Universitat Politècnica de Catalunya

  94. Agić Ž, Vulić I (2019) JW300: A wide-coverage parallel corpus for low-resource languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3204–3210. Association for Computational Linguistics, Florence, Italy. https://doi.org/10.18653/v1/P19-1310 . https://aclanthology.org/P19-1310

  95. Commentary N (2023) News Commentary Datasets. https://opus.nlpl.eu/News-Commentary.php

  96. Artetxe M, Schwenk H (2019) Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond. Transactions of the Association for Computational Linguistics 7:597–610

    Article  Google Scholar 

  97. Lee S, Lee J, Moon H, Park C, Seo J, Eo S, Koo S, Lim H (2023) A survey on evaluation metrics for machine translation. Mathematics 11(4):1006

    Article  Google Scholar 

  98. Bojar O, Helcl J, Kocmi T, Libovickỳ J, Musil T (2017) Results of the wmt17 neural mt training task. In: Proceedings of the Second Conference on Machine Translation, pp. 525–533

  99. Ma Q, Wei JTZ, Bojar O, Graham Y (2019) Results of the wmt19 metrics shared task: Segment-level and strong mt systems pose big challenges. Association for Computational Linguistics

  100. Mathur N, Wei J, Freitag M, Ma Q, Bojar O (2020) Results of the wmt20 metrics shared task. In: Proceedings of the Fifth Conference on Machine Translation, pp. 688–725

  101. Freitag M, Rei R, Mathur N, Lo CK, Stewart C, Foster G, Lavie A, Bojar O (2021) Results of the wmt21 metrics shared task: Evaluating metrics with expert-based human evaluations on ted and news domain. In: Proceedings of the Sixth Conference on Machine Translation, pp. 733–774

  102. Zhang T, Kishore V, Wu F, Weinberger KQ, Artzi Y (2019) Bertscore: Evaluating text generation with bert. ar**v preprint ar**v:1904.09675

  103. Yuan W, Neubig G, Liu P (2021) Bartscore: Evaluating generated text as text generation. Adv Neural Inf Process Syst 34:27263–27277

    Google Scholar 

  104. Stanojević M, Sima’an K (2014) Beer: Better evaluation as ranking. In: Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 414–419

  105. Sellam T, Das D, Parikh AP (2020) Bleurt: Learning robust metrics for text generation. ar**v preprint ar**v:2004.04696

  106. Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318

  107. Doddington G (2002) Automatic evaluation of machine translation quality using n-gram co-occurrence statistics. In: Proceedings of the Second International Conference on Human Language Technology Research, pp. 138–145

  108. Lavie A, Denkowski MJ (2009) The meteor metric for automatic evaluation of machine translation. Mach Transl 23:105–115

    Article  Google Scholar 

  109. Popović M (2015) chrf: character n-gram f-score for automatic mt evaluation. In: Proceedings of the Tenth Workshop on Statistical Machine Translation, pp. 392–395

  110. Lin CY, Och FJ (2004) Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04), pp. 605–612

  111. Munkova D, Hajek P, Munk M, Skalka J (2020) Evaluation of machine translation quality through the metrics of error rate and accuracy. Procedia Computer Science 171:1327–1336 https://doi.org/10.1016/j.procs.2020.04.142. Third International Conference on Computing and Network Communications (CoCoNet’19)

  112. Snover M, Dorr B, Schwartz R, Micciulla L, Makhoul J (2006) A study of translation edit rate with targeted human annotation. In: Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers, pp. 223–231

  113. Vedantam R, Lawrence Zitnick C, Parikh D (2015) Cider: Consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Zahra El Idrysy.

Ethics declarations

Conflict of interest/Competing interests

We have no conflicts of interest to disclose. All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Idrysy, F.Z., Hourri, S., El Miqdadi, I. et al. Unlocking the language barrier: A Journey through Arabic machine translation. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-19551-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-19551-8

Keywords

Navigation