Log in

Traffic flow prediction based on graph convolutional networks with a parallel attention network and stacked gate recurrent units

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Accurate traffic flow prediction is essential to address traffic issues and assist traffic managers make informed decisions in intelligent transportation systems. Extracting potential features from traffic data is challenging due to the complex topology of urban road networks and the time-varying traffic flow. To capture the global spatiotemporal characteristics of traffic flow, we propose a novel model based on graph convolutional networks with a parallel attention network and stacked gated recurrent units (PAGCN-SGRU). First, the parallel attention (PA) network enhances the feature representation of global traffic road nodes and road segments. Then, the graph convolutional networks (GCN) are designed to extract spatial characteristics. Next, the stacked gate recurrent units (SGRU) are employed to capture temporal features. Finally, PAGCN-SGRU discovers global spatiotemporal features for traffic flow prediction. The experimental results demonstrate that the accuracy of PAGCN-SGRU under the SZ-dataset is improved by 9.76\(\%\), 72.54\(\%\), 5.76\(\%\), 16.07\(\%\), 2.07\(\%\), 1.82\(\%\), 3.35\(\%\), and 6.59\(\%\), respectively, compared to that of HA, ARIMA, SVR, GCN, T-GCN, A3T-GCN, ST-GCN, and DCRNN. In the Los-dataset, the accuracy values increase by 7.11\(\%\), 8.94\(\%\), 6.66\(\%\), 7.77\(\%\), 3.43\(\%\), 2.45\(\%\), 2.28\(\%\), and 4.09\(\%\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statements

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Wang Y, **g C, Huang W, ** S, Lv X (2023) Adaptive spatiotemporal inceptionnet for traffic flow forecasting. IEEE Trans Intell Transportation Syst 24(4):3882–3907. https://doi.org/10.1109/TITS.2023.3237205

    Article  Google Scholar 

  2. Xuan D, Yan Z, Huang S, Liu HX (2018) A similitude theory for modeling traffic flow dynamics. IEEE Trans Intell Transportation Syst PP 1–12. https://doi.org/10.1109/TITS.2018.2837011

  3. **a D, Wang B, Li H, Li Y, Zhang Z (2016) A distributed spatial-temporal weighted model on MapReduce for short-term traffic flow forecasting. Neurocomputing 179:246–263. https://doi.org/10.1016/j.neucom.2015.12.013

    Article  Google Scholar 

  4. Zhuang W, Cao Y (2023) Short-term traffic flow prediction based on a k-nearest neighbor and bidirectional long short-term memory model. Appl Sci 13(4):2681. https://doi.org/10.3390/app13042681

    Article  Google Scholar 

  5. Belhadi A, Djenouri Y, Djenouri D, Lin JC-W (2020) A recurrent neural network for urban long-term traffic flow forecasting. Appl Intell 50:3252–3265. https://doi.org/10.1007/s10489-020-01716-1

    Article  Google Scholar 

  6. Xue Z, Xue Y (2018) Multi long-short term memory models for short-term traffic flow prediction. IEICE Trans Inf Syst E101.D (12):3272–3275. https://doi.org/10.1016/j.neucom.2018.12.016

  7. Shu W, Cai K, **ong NN (2021) A short-term traffic flow prediction model based on an improved gate recurrent unit neural network. IEEE Trans Intell Transportation Syst PP (99):1–12. https://doi.org/10.1109/TITS.2021.3094659

  8. Zhang Q, Liu S (2018) Urban traffic flow prediction model based on BP artificial neural network in Bei**g area. J Discrete Math Sci & Cryptography 21(4):849–858. https://doi.org/10.1080/09720529.2018.1479167

    Article  Google Scholar 

  9. Tian Y, Zhang K, Li J, Lin X, Yang B (2018) LSTM-based traffic flow prediction with missing data. Neurocomputing 318:297–305. https://doi.org/10.1016/j.neucom.2018.08.067

  10. Lin Y, Zhang JW, Liu H (2019) Deep learning based short-term air traffic flow prediction considering temporal-spatial correlation. Aerospace Sci Technol 93:105113. https://doi.org/10.1016/j.ast.2019.04.021

    Article  Google Scholar 

  11. Yang B, Sun S, Li J, Lin X, Tian Y (2019) Traffic flow prediction using LSTM with feature enhancement. Neurocomputing 332:320–327. https://doi.org/10.1016/j.neucom.2018.12.016

    Article  Google Scholar 

  12. Pavlyuk D (2019) Feature selection and extraction in spatiotemporal traffic forecasting: a systematic literature review. European Transport Res Rev 11(1):6. https://doi.org/10.1186/s12544-019-0345-9

    Article  Google Scholar 

  13. Vélez-Serrano D, Álvaro-Meca A, Sebastián-Huerta F, Vélez-Serrano J (2021) Spatio-temporal traffic flow prediction in madrid: An application of residual convolutional neural networks. Mathematics 9(9):1068. https://doi.org/10.3390/math9091068

    Article  Google Scholar 

  14. Zhang W, Yu Y, Qi Y, Shu F, Wang Y (2019) Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning. Transportmetrica A: Transport Sci 15(2):1688–1711. https://doi.org/10.1080/23249935.2019.1637966

    Article  Google Scholar 

  15. Li H, Li X, Su L, ** D, Huang J, Huang D (2022) Deep spatio-temporal adaptive 3D convolutional neural networks for traffic flow prediction. ACM Trans Intell Syst Technol (TIST) 13(2):1–21. https://doi.org/10.1145/3510829

    Article  Google Scholar 

  16. Pan Y, Zhang X, Jiang H, Li C (2021) A network traffic classification method based on graph convolution and LSTM. IEEE Access 9:158261–158272. https://doi.org/10.1109/ACCESS.2021.3128181

    Article  Google Scholar 

  17. Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32(1):4–24. https://doi.org/10.1109/TNNLS.2020.2978386

    Article  MathSciNet  Google Scholar 

  18. Wang H, Zhang R, Cheng X, Yang L (2022) Hierarchical traffic flow prediction based on spatial-temporal graph convolutional network. IEEE Trans Intell Transportation Syst 23(9):16137–16147. https://doi.org/10.1109/TITS.2022.3148105

    Article  Google Scholar 

  19. Chen F, Pan S, Jiang J, Huo H, Long G (2019) DAGCN: dual attention graph convolutional networks. In: 2019 International joint conference on neural networks (IJCNN), IEEE, pp 1–8. https://doi.org/10.1109/IJCNN.2019.8851698

  20. Li C, Qin X, Xu X, Yang D, Wei G (2020) Scalable graph convolutional networks with fast localized spectral filter for directed graphs. IEEE Access 8:105634–105644. https://doi.org/10.1109/ACCESS.2020.2999520

    Article  Google Scholar 

  21. Cui Z, Ke R, Pu Z, Wang Y (2020) Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transportation Res Part C: Emerging Technol 118:102674. https://doi.org/10.1016/j.trc.2020.102674

    Article  Google Scholar 

  22. Bae B, Kim H, Lim H, Liu Y, Han LD, Freeze PB (2018) Missing data imputation for traffic flow speed using spatio-temporal cokriging. Transportation Res Part C: Emerging Technol 88:124–139. https://doi.org/10.1016/j.trc.2018.01.015

    Article  Google Scholar 

  23. Zhao L, Song Y, Zhang C, Liu Y, Wang P, Lin T, Deng M, Li H (2019) T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Trans Intell Transportation Syst 21(9):3848–3858. https://doi.org/10.1109/TITS.2019.2935152

    Article  Google Scholar 

  24. Zheng H, Lin F, Feng X, Chen Y (2020) A hybrid deep learning model with attention-based Conv-LSTM networks for short-term traffic flow prediction. IEEE Trans Intell Transportation Syst 22(11):6910–6920. https://doi.org/10.1109/TITS.2020.2997352

    Article  Google Scholar 

  25. Van Der Voort M, Dougherty M, Watson S (1996) Combining kohonen maps with ARIMA time series models to forecast traffic flow. Transportation Res Part C: Emerging Technol 4(5):307–318. https://doi.org/10.1016/S0968-090X(97)82903-8

    Article  Google Scholar 

  26. Medina-Salgado B, Sánchez-DelaCruz E, Pozos-Parra P, Sierra JE (2022) Urban traffic flow prediction techniques: A review. Sustainable Comput: Inf Syst 35:100739. https://doi.org/10.1016/j.suscom.2022.100739

    Article  Google Scholar 

  27. Chandra SR, Al-Deek H (2009) Predictions of freeway traffic speeds and volumes using vector autoregressive models. J Intell Transportation Syst 13(2):53–72. https://doi.org/10.1080/15472450902858368

    Article  Google Scholar 

  28. Kumar SV, Vanajakshi L (2015) Short-term traffic flow prediction using seasonal ARIMA model with limited input data. European Transport Res Rev 7(3):1–9. https://doi.org/10.1007/s12544-015-0170-8

    Article  Google Scholar 

  29. Lin S-L, Huang H-Q, Zhu D-Q, Wang T-Z (2009) The application of space-time ARIMA model on traffic flow forecasting. in: 2009 International conference on machine learning and cybernetics, Vol. 6, IEEE, pp 3408–3412. https://doi.org/10.1109/ICMLC.2009.5212785

  30. Kumar SV (2017) Sciencedirect traffic flow prediction using Kalman filtering technique. Procedia Eng 187:582–587. https://doi.org/10.1016/j.proeng.2017.04.417

    Article  Google Scholar 

  31. Hong W-C, Dong Y, Zheng F, Wei SY (2011) Hybrid evolutionary algorithms in a SVR traffic flow forecasting model. Appl Math Comput 217(15):6733–6747. https://doi.org/10.1016/j.amc.2011.01.073

    Article  MathSciNet  Google Scholar 

  32. Kumar K, Parida M, Katiyar V (2013) Short term traffic flow prediction for a non urban highway using artificial neural network. Procedia-Soc Behavioral Sci 104:755–764. https://doi.org/10.1016/j.sbspro.2013.11.170

    Article  Google Scholar 

  33. Çetiner BG, Sari M, Borat O (2010) A neural network based traffic-flow prediction model. Math Comput Appl 15(2):269–278. https://doi.org/10.3390/MCA15020269

    Article  Google Scholar 

  34. Tedjopurnomo DA, Bao Z, Zheng B, Choudhury FM, Qin AK (2020) A survey on modern deep neural network for traffic prediction: Trends, methods and challenges. IEEE Trans Knowl Data Eng 34(4):1544–1561. https://doi.org/10.1109/TKDE.2020.3001195

    Article  Google Scholar 

  35. Castro-Neto M, Jeong Y-S, Jeong M-K, Han LD (2009) Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst Appl 36(3):6164–6173. https://doi.org/10.1016/j.eswa.2008.07.069

    Article  Google Scholar 

  36. Dey RK, Das AK (2023) Modified term frequency-inverse document frequency based deep hybrid framework for sentiment analysis. Multimed Tools Appl 82(21):32967–32990. https://doi.org/10.1007/s11042-023-14653-1

    Article  Google Scholar 

  37. Dey RK, Das AK (2022) A simple strategy for handling ’not’can improve the performance of sentiment analysis, in: International Conference on Computational Intelligence in Pattern Recognition, Springer, pp 255–267. https://doi.org/10.1007/978-981-19-3089-8_25

  38. Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  39. Dey RK, Das AK (2024) Neighbour adjusted dispersive flies optimization based deep hybrid sentiment analysis framework. Multimed Tools Appl 1–24. https://doi.org/10.1007/s11042-023-17953-8

  40. **a D, Yang N, Jian S, Hu Y, Li H (2022) SW-BiLSTM: a Spark-based weighted BiLSTM model for traffic flow forecasting. Multimed Tools Appl 81(17):23589–23614. https://doi.org/10.1007/s11042-022-12039-3

    Article  Google Scholar 

  41. Zhang K, Liu Z, Zheng L (2020) Short-term prediction of passenger demand in multi-zone level: Temporal convolutional neural network with multi-task learning. IEEE Trans Intell Transportation Syst 21(4):1480–1490. https://doi.org/10.1109/TITS.2019.2909571

    Article  Google Scholar 

  42. Peng H, Du B, Liu M, Liu M, Ji S, Wang S, Zhang X, He L (2021) Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning. Information Sciences 578:401–416. https://doi.org/10.1016/j.ins.2021.07.007

    Article  MathSciNet  Google Scholar 

  43. Lv M, Hong Z, Chen L, Chen T, Zhu T, Ji S (2020) Temporal multi-graph convolutional network for traffic flow prediction. IEEE Trans Intell Transportation Syst 22(6):3337–3348. https://doi.org/10.1109/TITS.2020.2983763

    Article  Google Scholar 

  44. Wang Y, Wu H, Zhang J, Gao Z, Wang J, Philip SY, Long M (2022) PREDRNN: A recurrent neural network for spatiotemporal predictive learning. IEEE Trans Pattern Anal Mach Intell 45(2):2208–2225. https://doi.org/10.1109/TPAMI.2022.3165153

    Article  Google Scholar 

  45. Ma X, Tao Z, Wang Y, Yu H, Wang Y (2015) Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Res Part C: Emerging Technol 54:187–197. https://doi.org/10.1016/j.trc.2015.03.014

    Article  Google Scholar 

  46. Shu W, Cai K, **ong NN (2021) A short-term traffic flow prediction model based on an improved gate recurrent unit neural network. IEEE Trans Intell Transportation Syst 23(9):16654–16665. https://doi.org/10.1109/TITS.2021.3094659

    Article  Google Scholar 

  47. Ma C, Dai G, Zhou J (2021) Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM-BILSTM method. IEEE Trans Intell Transportation Syst 23(6):5615–5624. https://doi.org/10.1109/TITS.2021.3055258

    Article  Google Scholar 

  48. **a D, Chen Y, Zhang W, Hu Y, Li Y, Li H (2023) RSAB-ConvGRU: A hybrid deep-learning method for traffic flow prediction. Multimed Tools Appl 1–27. https://doi.org/10.1007/s11042-023-15877-x

  49. Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: International joint conference on artificial intelligence. https://doi.org/10.24963/ijcai.2018/505

  50. Dong N, Li T, Liu T, Tu R, Lin F, Liu H, Bo Y (2023) A method for short-term passenger flow prediction in urban rail transit based on deep learning. Multimed Tools Appl 1–23. https://doi.org/10.1007/s11042-023-14388-z

  51. Cao M, Li VO, Chan VW (2020) A CNN-LSTM model for traffic speed prediction. In: 2020 IEEE 91st Vehicular technology conference (VTC2020-Spring), IEEE, pp 1–5. https://doi.org/10.1109/VTC2020-Spring48590.2020.9129440

  52. Brauwers G, Frasincar F (2021) A general survey on attention mechanisms in deep learning. IEEE Trans Knowl Data Eng 4347:1–20. https://doi.org/10.1109/TKDE.2021.3126456

    Article  Google Scholar 

  53. Do LN, Vu HL, Vo BQ, Liu Z, Phung D (2019) An effective spatial-temporal attention based neural network for traffic flow prediction. Transportation Res Part C: Emerging Technol 108:12–28. https://doi.org/10.1016/j.trc.2019.09.008

    Article  Google Scholar 

  54. Zhang S, Tong H, Xu J, Maciejewski R (2019) Graph convolutional networks: a comprehensive review. Comput Soc Netw 6(1):1–23. https://doi.org/10.1186/s40649-019-0069-y

    Article  Google Scholar 

  55. Yan F, Silamu W, Li Y, Chai Y (2022) SPCA-Net: a based on spatial position relationship co-attention network for visual question answering. Visual Comput 38(9–10):3097–3108. https://doi.org/10.1007/s00371-022-02524-z

    Article  Google Scholar 

  56. Lu Z, Xu B, Sun L, Zhan T, Tang S (2020) 3-D channel and spatial attention based multiscale spatial-spectral residual network for hyperspectral image classification. IEEE J Selected Topics Appl Earth Observations Remote Sens 13:4311–4324. https://doi.org/10.1109/JSTARS.2020.3011992

    Article  Google Scholar 

  57. Zhang H, Goodfellow I, Metaxas D, Odena A (2019) Self-attention generative adversarial networks. In: International conference on machine learning, PMLR, pp 7354–7363. https://doi.org/10.48550/ar**v.1805.08318

  58. Reza S, Ferreira MC, Machado J, Tavares JMR (2022) A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks. Expert Syst Appl 202:117275. https://doi.org/10.1016/j.eswa.2022.117275

    Article  Google Scholar 

  59. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  60. Bai J, Zhu J, Song Y, Zhao L, Hou Z, Du R, Li H (2021) A3T-GCN: Attention temporal graph convolutional network for traffic forecasting. ISPRS Int J Geo-Inf 10(7):485. https://doi.org/10.3390/ijgi10070485

    Article  Google Scholar 

  61. Li Y, Yu R, Shahabi C, Liu Y (2018) Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In: International conference on learning representations. https://doi.org/10.48550/ar**v.1707.01926

Download references

Acknowledgements

This work described in this paper was supported in part by the National Natural Science Foundation of China (Grant nos. 62162012, 62173278, and 62072061), the High-Level Innovative Talent Project of Guizhou Province (Grant no. QKHPTRC-GCC2023027), the Natural Science Research Project of Department of Education of Guizhou Province (Grant no. QJJ2022015), the Fundamental Research Funds for the Central Universities (Grant no. SWU-XDJH202312), the Scientific Research Platform Project of Guizhou Minzu University (Grant no. GZMUSYS202104), and the Natural Science Foundation of Guizhou Minzu University (Grant no. GZMUZK2022YB19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dawen **a or Huaqing Li.

Ethics declarations

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**a, D., Ao, Y., Wei, X. et al. Traffic flow prediction based on graph convolutional networks with a parallel attention network and stacked gate recurrent units. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-19479-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-19479-z

Keywords

Navigation