Log in

Automatic skin lesion segmentation using attention residual U-Net with improved encoder-decoder architecture

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The automatic segmentation of skin lesions in dermoscopic images is a challenging task due to the presence of artifacts, small lesion sizes, and low contrast between lesions and non-lesion regions. Deep learning models such as U-Net have been used for accurate segmentation in general. Still, their success rate is limited in the case of dermoscopic images due to these challenges. In this paper, we propose a U-Net-based model for efficient and effective segmentation of skin lesions in dermoscopic images. The proposed model, called Attention Residual U-Net with a modified decoder (ARU-Net-MD), employs an encoder-decoder architecture with residual learning, attention gates, and a modified decoder with a combined loss function to achieve higher accuracy for the semantic segmentation of dermoscopic images. Residual learning allows for an efficient model with fewer parameters, while attention gates highlight important features, and the modified decoder with a combined loss function assists the learning process and enables the model to learn more semantic information during training. We evaluated our model on four publicly available datasets, PH2, ISIC 2016, ISIC 2017, and ISIC 2018, and observed an accuracy of 0.96, 0.97, 0.95, and 0.96, respectively, outperforming other state-of-the-art skin lesion segmentation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are PH2, ISIC 2016, and ISIC 2018. PH2 dataset is publicly available at https://www.fc.up.pt/addi/ph2%20database.html, and ISIC 2016, ISIC 2017, and ISIC 2018 are available at https://challenge.isic-archive.com/data/.

References

  1. Iqbal I, Younus M, Walayat K, Kakar MU, Ma J (2021) Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images. Comput Med Imaging Graph 88:101843. https://doi.org/10.1016/j.compmedimag.2020.101843

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. Ca Cancer J Clin 73(1):17–48. https://doi.org/10.3322/caac.21763

    Article  PubMed  Google Scholar 

  3. Stenzel AE, Miller J, Holtan SG, Brown K, Ahmed RL, Lazovich D, Vogel RI (2023) Cross-sectional study of physical activity among long-term melanoma survivors and population controls. Arch Dermatol Res 315(4):1011–1016. https://doi.org/10.1007/s00403-022-02334-2

    Article  PubMed  Google Scholar 

  4. Nachbar F, Stolz W, Merkle T, Cognetta AB, Vogt T, Landthaler M, Bilek P, Braun-Falco O, Plewig G (1994) The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions. J Am Acad Dermatol 30(4):551–559. https://doi.org/10.1016/S0190-9622(94)70061-3

    Article  CAS  PubMed  Google Scholar 

  5. Garnavi R, Aldeen M, Celebi ME, Bhuiyan A, Dolianitis C, Varigos G (2009) Skin lesion segmentation using color channel optimization and clustering-based histogram thresholding. Int J Biomed Biol Eng 3(12):365–373. https://doi.org/10.5281/zenodo.1072764

    Article  Google Scholar 

  6. Schaefer G, Rajab MI, Celebi ME, Iyatomi H (2011) Colour and contrast enhancement for improved skin lesion segmentation. Comput Med Imaging Graph 35(2):99–104. https://doi.org/10.1016/j.compmedimag.2010.08.004

    Article  PubMed  Google Scholar 

  7. Celebi ME, Kingravi HA, Uddin B, Iyatomi H, Aslandogan YA, Stoecker WV, Moss RH (2007) A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph 31(6):362–373. https://doi.org/10.1016/j.compmedimag.2007.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wong A, Scharcanski J, Fieguth P (2011) Automatic skin lesion segmentation via iterative stochastic region merging. IEEE Trans Inf Technol Biomed 15(6):929–936. https://doi.org/10.1109/TITB.2011.2157829

    Article  PubMed  Google Scholar 

  9. Abbas Q, Fondón I, Rashid M (2011) Unsupervised skin lesions border detection via two-dimensional image analysis. Comput Methods Programs Biomed 104(3):1–5. https://doi.org/10.1016/j.cmpb.2010.06.016

    Article  Google Scholar 

  10. Sforza G, Castellano G, Arika SK, LeAnder RW, Stanley RJ, Stoecker WV, Hagerty JR (2012) Using adaptive thresholding and skewness correction to detect gray areas in melanoma in situ images. IEEE Trans Instrum Meas 61(7):1839–1847. https://doi.org/10.1109/TIM.2012.2192349

    Article  Google Scholar 

  11. Castillejos H, Ponomaryov V, Nino-de-Rivera L, Golikov V (2012) Wavelet transform fuzzy algorithms for dermoscopic image segmentation. Comput Math Methods Med 2012:1. https://doi.org/10.1155/2012/578721

    Article  Google Scholar 

  12. Zhou H, Schaefer G, Sadka AH, Celebi ME (2009) Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images. IEEE J Selec Topics Signal Process 3(1):26–34. https://doi.org/10.1109/JSTSP.2008.2010631

    Article  Google Scholar 

  13. Jaisakthi SM, Mirunalini P, Aravindan C (2018) Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms. IET Comput Vis (8):1088–1095. https://doi.org/10.1049/iet-cvi.2018.5289

  14. Oliveira RB, Mercedes Filho E, Ma Z, Papa JP, Pereira AS, Tavares JM (2016) Computational methods for the image segmentation of pigmented skin lesions: a review. Comput Methods Programs Biomed 131:127–141. https://doi.org/10.1016/j.cmpb.2016.03.032

    Article  PubMed  Google Scholar 

  15. ul haq I, Amin J, Sharif M, Almas Anjum M (2022) Skin lesion detection using recent machine learning approaches. In: Prognostic models in healthcare: AI and Statistical approaches. Springer Nature Singapore, Singapore, pp 193–211. https://doi.org/10.1007/978-981-19-2057-8_7

  16. Murugan A, Nair SA, Kumar KS (2019) Detection of skin cancer using SVM, random forest and kNN classifiers. J Med Syst 43:1–9. https://doi.org/10.1007/s10916-019-1400-8

    Article  Google Scholar 

  17. Taufiq MA, Hameed N, Anjum A, Hameed F (2016) m-Skin doctor: a mobile enabled system for early melanoma skin cancer detection using support vector machine. eHealth 360°: International Summit on eHealth, Budapest, Hungary. Springer International Publishing, pp 468–475. https://doi.org/10.1007/978-3-319-49655-9_57

  18. Akram T, Khan MA, Sharif M, Yasmin M (2018) Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features. J Ambient Intell Humaniz Comput: 1–20. https://doi.org/10.1007/s12652-018-1051-5

  19. Nazi ZA, Abir TA (2020) Automatic skin lesion segmentation and melanoma detection: transfer learning approach with u-net and dcnn-svm. In: Proceedings of International Joint Conference on Computational Intelligence: IJCCI 2018. Springer, Singapore, pp 371–381. https://doi.org/10.1007/978-981-13-7564-4_32

  20. Bassel A, Abdulkareem AB, Alyasseri ZA, Sani NS, Mohammed HJ (2022) Automatic malignant and benign skin cancer classification using a hybrid deep learning approach. Diagnostics 12(10):2472. https://doi.org/10.3390/diagnostics12102472

    Article  PubMed  PubMed Central  Google Scholar 

  21. Monika MK, Vignesh NA, Kumari CU, Kumar MN, Lydia EL (2020) Skin cancer detection and classification using machine learning. Mater Today: Proc 33:4266–4270. https://doi.org/10.1016/j.matpr.2020.07.366

    Article  Google Scholar 

  22. Kayalibay B, Jensen G, van der Smagt P (2017) CNN-based segmentation of medical imaging data. ar**v preprint ar**v:1701.03056. https://doi.org/10.48550/ar**v.1701.03056

  23. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. InMedical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Proceedings, Part III, Springer International Publishing, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

  24. Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual u-net. IEEE Geosci Remote Sens Lett 15(5):749–753. https://doi.org/10.1109/LGRS.2018.2802944

    Article  CAS  Google Scholar 

  25. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B (2018) Attention u-net: learning where to look for the pancreas. ar**v Preprint ar**v 180403999. https://doi.org/10.48550/ar**v.1804.03999

  26. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process 45(11):2673–2681. https://doi.org/10.1109/78.650093

    Article  Google Scholar 

  27. Girshick R, Donahue J, Darrell T, Malik J (2015) Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans Pattern Anal Mach Intell 38(1):142–158. https://doi.org/10.1109/TPAMI.2015.2437384

    Article  Google Scholar 

  28. Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. ar**. ar**v preprint ar**v:2305.11003. https://doi.org/10.48550/ar**v.2305.11003

  29. Ni ZL, Bian GB, Zhou XH, Hou ZG, **e XL, Wang C, Zhou YJ, Li RQ, Li Z (2019) Raunet: Residual attention u-net for semantic segmentation of cataract surgical instruments. InInternational Conference on Neural Information Processing. Springer International Publishing, Cham, pp 139–149. https://doi.org/10.1007/978-3-030-36711-4_13

    Chapter  Google Scholar 

  30. Chen LC, Yang Y, Wang J, Xu W, Yuille AL (2016) Attention to scale: scale-aware semantic image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3640–3649. https://doi.org/10.1109/CVPR.2016.396

  31. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  32. Yu L, Chen H, Dou Q, Qin J, Heng PA (2016) Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36(4):994–1004. https://doi.org/10.1109/TMI.2016.2642839

    Article  PubMed  Google Scholar 

  33. Yuan Y, Chao M, Lo YC (2017) Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans Med Imaging 36(9):1876–1886. https://doi.org/10.1109/TMI.2017.2695227

    Article  PubMed  Google Scholar 

  34. Yuan Y, Lo YC (2017) Improving dermoscopic image segmentation with enhanced convolutional-deconvolutional networks. IEEE J Biomed Health Inf 23(2):519–526. https://doi.org/10.1109/JBHI.2017.2787487

    Article  Google Scholar 

  35. Venkatesh GM, Naresh YG, Little S, O’Connor NE (2018) A deep residual architecture for skin lesion segmentation. InOR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis: First International Workshop, OR 2.0 2018, 5th International Workshop, CARE 2018, 7th International Workshop, CLIP 2018, Third International Workshop, ISIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, Springer International Publishing, pp 277–284. https://doi.org/10.1007/978-3-030-01201-4_30

  36. Dash M, Londhe ND, Ghosh S, Semwal A, Sonawane RS (2019) PsLSNet: automated psoriasis skin lesion segmentation using modified u-net-based fully convolutional network. Biomed Signal Process Control 52:226–237. https://doi.org/10.1016/j.bspc.2019.04.002

    Article  Google Scholar 

  37. Tang P, Liang Q, Yan X, **ang S, Sun W, Zhang D, Coppola G (2019) Efficient skin lesion segmentation using separable-unet with stochastic weight averaging. Comput Methods Programs Biomed 178:289–301. https://doi.org/10.1016/j.cmpb.2019.07.005

    Article  PubMed  Google Scholar 

  38. Goyal M, Oakley A, Bansal P, Dancey D, Yap MH (2019) Skin lesion segmentation in dermoscopic images with ensemble deep learning methods. IEEE Access 8:4171–4181. https://doi.org/10.1109/ACCESS.2019.2960504

    Article  Google Scholar 

  39. Lin D, Li Y, Nwe TL, Dong S, Oo ZM (2020) RefineU-Net: Improved U-Net with progressive global feedbacks and residual attention guided local refinement for medical image segmentation. Pattern Recognit Lett 138:267–275. https://doi.org/10.1016/j.patrec.2020.07.013

    Article  Google Scholar 

  40. Arora R, Raman B, Nayyar K, Awasthi R (2021) Automated skin lesion segmentation using attention-based deep convolutional neural network. Biomed Signal Process Control 65:102358. https://doi.org/10.1016/j.bspc.2020.102358

    Article  Google Scholar 

  41. Wibowo A, Purnama SR, Wirawan PW, Rasyidi H (2021) Lightweight encoder-decoder model for automatic skin lesion segmentation. Inf Med Unlocked 25:100640. https://doi.org/10.1016/j.imu.2021.100640

    Article  Google Scholar 

  42. Sarker MM, Rashwan HA, Akram F, Singh VK, Banu SF, Chowdhury FU, Choudhury KA, Chambon S, Radeva P, Puig D, Abdel-Nasser M (2021) SLSNet: skin lesion segmentation using a lightweight generative adversarial network. Expert Syst Appl 183:115433. https://doi.org/10.1016/j.eswa.2021.115433

    Article  Google Scholar 

  43. Tong X, Wei J, Sun B, Su S, Zuo Z, Wu P (2021) ASCU-Net: attention gate, spatial and channel attention u-net for skin lesion segmentation. Diagnostics 11(3):501. https://doi.org/10.3390/diagnostics11030501

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Wang S (2022) Skin lesion segmentation with attention-based SC-Conv U-Net and feature map distortion. SIViP 6:1471–1479. https://doi.org/10.1007/s11760-021-02100-3

    Article  Google Scholar 

  45. Khouloud S, Ahlem M, Fadel T, Amel S (2022) W-net and inception residual network for skin lesion segmentation and classification. Appl Intell 1–9.https://doi.org/10.1007/s10489-021-02652-4

  46. Wu H, Pan J, Li Z, Wen Z, Qin J (2020) Automated skin lesion segmentation via an adaptive dual attention module. IEEE Trans Med Imaging 40(1):357–370. https://doi.org/10.1109/TMI.2020.3027341

    Article  PubMed  Google Scholar 

  47. Qiu S, Li C, Feng Y, Zuo S, Liang H, Xu A (2023) GFANet: gated fusion attention network for skin lesion segmentation. Comput Biol Med 155:106462. https://doi.org/10.1016/j.compbiomed.2022.106462

    Article  PubMed  Google Scholar 

  48. Zeng G, Peng H, Li A, Liu Z, Liu C, Yu PS, He L (2023) Unsupervised skin lesion segmentation via structural entropy minimization on multi-scale superpixel graphs. ar**v preprint ar**v:2309.01899. https://doi.org/10.48550/ar**v.2309.01899

  49. Li X, Peng B, Hu J, Ma C, Yang D, **e Z (2024) USL-Net: uncertainty self-learning network for unsupervised skin lesion segmentation. Biomed Signal Process Control 89:105769. https://doi.org/10.1016/j.bspc.2023.105769

    Article  Google Scholar 

  50. Agarap AF (2018) Deep learning using rectified linear units (relu). ar**v preprint ar**v:1803.08375. https://doi.org/10.48550/ar**v.1803.08375

  51. Rajon DA, Bolch WE (2003) Marching cube algorithm: review and trilinear interpolation adaptation for image-based dosimetric models. Comput Med Imaging Graph 27(5):411–435. https://doi.org/10.1016/S0895-6111(03)00032-6

    Article  CAS  PubMed  Google Scholar 

  52. Lin TY, Goyal P, Girshick R, He K, Dollár P (2018) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42(2):318–327. https://doi.org/10.1109/TPAMI.2018.2858826

    Article  PubMed  Google Scholar 

  53. Jadon S (2020) A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp 1–7. https://doi.org/10.1109/CIBCB48159.2020.9277638

  54. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980. https://doi.org/10.48550/ar**v.1412.6980

  55. Mendonça T, Ferreira PM, Marques JS, Marcal AR, Rozeira J (2013) PH 2-A dermoscopic image database for research and benchmarking. In: 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 5437–5440. https://doi.org/10.1109/EMBC.2013.6610779

  56. Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). ar**v preprint ar**v:1605.01397. https://doi.org/10.48550/ar**v.1605.01397

  57. Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H, Halpern A (2018) Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) pp 168–172. https://doi.org/10.1109/ISBI.2018.8363547

  58. Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, Helba B, Kalloo A, Liopyris K, Marchetti M, Kittler H (2019) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). ar**v preprint ar**v:1902.03368. https://doi.org/10.48550/ar**v.1902.03368

  59. He C, Li K, Xu G, Yan J, Tang L, Zhang Y, Wang Y, Li X (2023) Hqg-net: unpaired medical image enhancement with high-quality guidance. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2023.3315307

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this work.

Corresponding author

Correspondence to Rajdeep Kaur.

Ethics declarations

Ethics approval

The research does not involve any human or animal participant, their data, or biological material. No ethical approval is required.

Consent to participate

The research does not involve any human individual participant. Consent to participate is not required.

Consent for publication

The manuscript does not contain any individual person’s data in any form. Consent to publish is not required.

Conflict of interest/Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Kaur, S. Automatic skin lesion segmentation using attention residual U-Net with improved encoder-decoder architecture. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18895-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18895-5

Keywords

Navigation