Log in

CT imaging and lung segmentation analysis of SARS-CoV-2 variants and vaccination impacts on lung impairment quantification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This study analyzed Chest CT exams from 592 patients with SARS-CoV-2 between 2020 and 2022 using the open-source 3D Slicer software. We conducted lung segmentation and volume quantification to investigate inflated lung volume and different impairments volumes (inflammatory process and fibrosis, ground-glass opacities and the total affected lung) against SARS-CoV-2 variants (original strain, gamma, delta and omicron) during a mass vaccination campaign carried out in Botucatu/SP-Brazil (before, during, and after three doses). We aimed to verify whether these parameters (variants and vaccination) affected lung impairments. Our findings indicated that gamma variant was more detrimental than delta and omicron variants, with higher volumes in inflammatory process and fibrosis (13.78% against 9.00% and 8.90%), ground-glass opacity (31.73% against 25.81% and 29.04%) and total affected volume (45.99% against 35.26% and 38.43%), while a lower volume was observed for inflated lung volume (50.04% against 58.19% and 57.50%). The results also revealed substantial differences in pulmonary impairments between the first and the third vaccination stages. We noticed a reduction in volumes of inflammatory process and fibrosis (14.51% to 9.19%), ground-glass opacity (33.67% to 26.77%) and the total affected volume (48.60% to 36.42%), while inflated lung volume increased (48.80% to 58.12%). The study brings novelty approach and findings that enhances the understanding of variant-specific impacts on pulmonary impairments and highlights the vaccine efficacy in reducing lung damage from SARS-CoV-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No patient data (DICOM images) analyzed during this study are available on request. Our ethics committee only approved its use in this particular study.

References

  1. WHO (2023) Available at: https://covid19.who.int/. Accessed 29 Sep 2023

  2. Brazil (2023) Available at: https://covid.saude.gov.br/. Accessed 29 Sep 2023

  3. Yang T et al (2022) Sequelae of COVID-19 among previously hospitalized patients up to 1 year after discharge: a systematic review and meta-analysis. Infection 50(5):1067–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elhiny R, Al-Jumaili AA, Yawuz MJ (2022) What might COVID-19 patients experience after recovery? A comprehensive review. Int J Pharm Pract 30(5):404–413

    Article  PubMed  Google Scholar 

  5. Faria NR et al (2021) Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372(6544):815–821

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Sabino EC et al (2021) Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 397(10273):452–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alcantara LCJ et al (2022) SARS-CoV-2 epidemic in Brazil: how the displacement of variants has driven distinct epidemic waves. Virus Res 315:198785

    Article  CAS  PubMed  Google Scholar 

  8. Mohsin M, Mahmud S (2022) Omicron SARS-CoV-2 variant of concern: A review on its transmissibility, immune evasion, reinfection, and severity. Medicine (Baltimore) 101(19):e29165

    Article  CAS  PubMed  Google Scholar 

  9. Costa Clemens SA et al (2022) Effectiveness of the Fiocruz recombinant ChadOx1-nCoV19 against variants of SARS-CoV-2 in the Municipality of Botucatu-SP. Front Public Health 10:1016402

    Article  PubMed  PubMed Central  Google Scholar 

  10. **ao F et al (2022) Prediction of potential severe coronavirus disease 2019 patients based on CT radiomics: A retrospective study. Med Phys 49(9):5886–5898

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Chung M et al (2020) CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology 295(1):202–207

    Article  PubMed  Google Scholar 

  12. Alirr OI (2022) Automatic deep learning system for COVID-19 infection quantification in chest CT. Multimed Tools Appl 81(1):527–541

    Article  PubMed  Google Scholar 

  13. Ni Q et al (2020) A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur Radiol 30(12):6517–6527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diniz JOB et al (2021) Segmentation and quantification of COVID-19 infections in CT using pulmonary vessels extraction and deep learning. Multimed Tools Appl 80(19):29367–29399

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barros Netto SM et al (2017) Unsupervised detection of density changes through principal component analysis for lung lesion classification. Multimed Tools Appl 76(18):18929–18954

    Article  Google Scholar 

  16. Alves AFF et al (2021) Automatic algorithm for quantifying lung involvement in patients with chronic obstructive pulmonary disease, infection with SARS-CoV-2, paracoccidioidomycosis and no lung disease patients. PLoS ONE 16(6):e0251783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Rikxoort EM, van Ginneken B (2013) Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review. Phys Med Biol 58(17):R187-220

    Article  PubMed  Google Scholar 

  18. Carmo D et al (2022) A systematic review of automated segmentation methods and public datasets for the lung and its lobes and findings on computed tomography images. Yearb Med Inform 31(1):277–295

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  19. Zhu J et al (2019) Preliminary Clinical Study of the Differences Between Interobserver Evaluation and Deep Convolutional Neural Network-Based Segmentation of Multiple Organs at Risk in CT Images of Lung Cancer. Front Oncol 9:627

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ohkubo H et al (2016) Normal Lung Quantification in Usual Interstitial Pneumonia Pattern: The Impact of Threshold-based Volumetric CT Analysis for the Staging of Idiopathic Pulmonary Fibrosis. PLoS ONE 11(3):e0152505

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fervers P et al (2022) Assessment of COVID-19 lung involvement on computed tomography by deep-learning-, threshold-, and human reader-based approaches-an international, multi-center comparative study. Quant Imaging Med Surg 12(11):5156–5170

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ren H et al (2020) An unsupervised semi-automated pulmonary nodule segmentation method based on enhanced region growing. Quant Imaging Med Surg 10(1):233–242

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wallner J et al (2018) Clinical evaluation of semi-automatic open-source algorithmic software segmentation of the mandibular bone: Practical feasibility and assessment of a new course of action. PLoS ONE 13(5):e0196378

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wallner J et al (2019) A review on multiplatform evaluations of semi-automatic open-source based image segmentation for cranio-maxillofacial surgery. Comput Methods Programs Biomed 182:105102

    Article  PubMed  Google Scholar 

  25. Thomas HMT et al (2017) Hybrid positron emission tomography segmentation of heterogeneous lung tumors using 3D Slicer: improved GrowCut algorithm with threshold initialization. J Med Imaging (Bellingham) 4(1):011009

    Article  Google Scholar 

  26. Fedorov A et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341

    Article  PubMed  PubMed Central  Google Scholar 

  27. 3D Slicer (2023) Available at: https://github.com/Slicer/Slicer. Accessed 19 Dec 2023

  28. Funama Y et al (2009) Detection of nodules showing ground-glass opacity in the lungs at low-dose multidetector computed tomography: phantom and clinical study. J Comput Assist Tomogr 33(1):49–53

    Article  PubMed  Google Scholar 

  29. Zhang Y et al (2017) Analysis of pulmonary pure ground-glass nodule in enhanced dual energy CT imaging for predicting invasive adenocarcinoma: comparing with conventional thin-section CT imaging. J Thorac Dis 9(12):4967–4978

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang Z et al (2013) Optimal threshold in CT quantification of emphysema. Eur Radiol 23(4):975–984

    Article  PubMed  Google Scholar 

  31. Lung CT Analyzer (2023) Available at: https://github.com/rbumm/SlicerLungCTAnalyzer. Accessed 19 Dec 2023

  32. Zhu L et al (2014) An effective interactive medical image segmentation method using fast growcut. In: Int Conf Med Image Comput Comput Assist Interv. Workshop on interactive methods, vol 17, WS

  33. Moher D et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shapiro SS, Wilk MB (1965) An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52(3/4):591

    Article  MathSciNet  Google Scholar 

  35. Kruskal WH (1952) A Nonparametric test for the Several Sample Problem. Ann Math Stat 23(4):525–540

    Article  MathSciNet  Google Scholar 

  36. Dunn OJ (1964) Multiple Comparisons Using Rank Sums. Technometrics 6(3):241

    Article  Google Scholar 

  37. Voysey M et al (2021) Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397(10269):99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Katikireddi SV et al (2022) Two-dose ChAdOx1 nCoV-19 vaccine protection against COVID-19 hospital admissions and deaths over time: a retrospective, population-based cohort study in Scotland and Brazil. Lancet 399(10319):25–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duong BV et al (2022) Is the SARS CoV-2 Omicron Variant Deadlier and More Transmissible Than Delta Variant? Int J Environ Res Public Health 19(8):4586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Venkatram S et al (2023) Comparison of patients admitted to an inner-city intensive care unit across 3 COVID-19 waves. Medicine (Baltimore) 102(8):e33069

    Article  PubMed  Google Scholar 

  41. El-Menyar A et al (2022) A quick sco** review of the first year of vaccination against the COVID-19 pandemic: Do we need more shots or time? Medicine (Baltimore) 101(37):e30609

    Article  PubMed  Google Scholar 

  42. Guiot J et al (2022) Automatized lung disease quantification in patients with COVID-19 as a predictive tool to assess hospitalization severity. Front Med (Lausanne) 9:930055

    Article  PubMed  Google Scholar 

  43. Ippolito D et al (2021) Computed tomography semi-automated lung volume quantification in SARS-CoV-2-related pneumonia. Eur Radiol 31(5):2726–2736

    Article  CAS  PubMed  Google Scholar 

  44. Risoli C et al (2022) Different Lung Parenchyma Quantification Using Dissimilar Segmentation Software: A Multi-Center Study for COVID-19 Patients. Diagnostics (Basel) 12(6):1501

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by São Paulo Research Foundation—FAPESP (Process number: 2020/05539-9) and by Brazilian National Council for Scientific and Technological Development—CNPQ (Process number: 304992/2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Rodrigues de Pina.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, M.A.A., Alvarez, M., Fortaleza, C.M.C.B. et al. CT imaging and lung segmentation analysis of SARS-CoV-2 variants and vaccination impacts on lung impairment quantification. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18761-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18761-4

Keywords

Navigation