Log in

An integrated framework for predicting air quality index using pollutant concentration and meteorological data

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Everyone wishes to lead a healthy life, but the tremendous increase in air pollution affects our lives. The current tools can give updates on the Air Quality Index (AQI), but we can get further insights into air pollution by applying knowledge discovery and analytics techniques. Our research proposes a novel and integrated framework to predict AQI using pollutant concentration data and meteorological data. The framework comprises four modules for insights into air pollution. The first module (AQIfp) computes air quality by forecasting pollutant concentrations of particulate matter and harmful gases. The second module (AQIp) predicts air quality using pollutant data and historical air quality index data. The third module (AQIm) predicts AQI using meteorological features (temperature, surface pressure, cloud cover, humidity, wind speed, wind direction, and precipitation) and extra features (month, year, time, day of month, day of week). The fourth module (AQIc) computes AQI by combining the results of AQIp and AQIm. Various methods are used for forecasting pollutants and predicting AQI, viz artificial neural networks (ANN), random forest regression, XGradientboost, long-short term memory, vector autoregression, auto-regressive integrated moving average (ARIMA), decision tree regression, support vector regression, multiple linear regression, and K-nearest neighbour. The results show that different methods are best suited for various pollutants. However, ARIMA and ANN successfully predict almost all the pollutants. The results are promising, with Mean Absolute Error to predict AQI being 7.09 only when combining AQIp and AQIm. AQI can be predicted best with both pollutant and meteorological data. Since the modules are independent and if one data is missing, any module can be utilized to obtain an approximation of the AQI with minimal error. The framework will assist in providing decisions at the individual and administration levels to mitigate air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no new data is created. However, we analyzed the data from the website Central Pollution Control Board.

References

  1. Beelen R et al (2014) Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 383(9919):785–795. https://doi.org/10.1016/S0140-6736(13)62158-3

    Article  Google Scholar 

  2. Bhatia S, Sachdeva S, Goswami P (Oct. 2022) Air pollution prediction and hotspot detection using machine learning. J Stat Manage Syst 25(7):1553–1564. https://doi.org/10.1080/09720510.2022.2130568

    Article  Google Scholar 

  3. Shaban KB, Kadri A, Rezk E (2016) Urban air pollution monitoring system with forecasting models. IEEE Sensors J 16(8):2598–2606. https://doi.org/10.1109/JSEN.2016.2514378

    Article  Google Scholar 

  4. Zhou Y, De S, Ewa G, Perera C, Moessner K (2018) Data-driven air quality characterization for urban environments: A case study. IEEE Access 6:77996–78006. https://doi.org/10.1109/ACCESS.2018.2884647

    Article  Google Scholar 

  5. Tao Q, Liu F, Li Y, Sidorov D (2019) Air Pollution Forecasting Using a Deep Learning Model Based on 1D Convnets and Bidirectional GRU. IEEE Access 7:76690–76698. https://doi.org/10.1109/ACCESS.2019.2921578

    Article  Google Scholar 

  6. Xayasouk T, Lee HM, Lee G (2020) Air pollution prediction using long short-term memory (LSTM) and deep autoencoder (DAE) models, Sustainability (Switzerland), 12(6). doi: https://doi.org/10.3390/su12062570

  7. Gu K, Qiao J, Lin W (2018) Recurrent Air Quality Predictor Based on Meteorology- and Pollution-Related Factors. IEEE Trans Industr Inform 14(9):3946–3955. https://doi.org/10.1109/TII.2018.2793950

    Article  Google Scholar 

  8. Suganya S, Meyyappan T (2020) Forecasting And Prediction Of Air Pollution Levels To Protect Human Beings From Health Hazards, International Journal of Scientific & Technology Research, vol. 9, p. 1, [Online]. Available: www.ijstr.org

  9. Ye Z, Air Pollutants Prediction in Shenzhen Based on ARIMA and Prophet Method, doi: 10.1051/e3sconf/20191360

  10. Ganesh SS, Modali SH, Palreddy SR, Arulmozhivarman P (2017) Forecasting air quality index using regression models: A case study on Delhi and Houston. In 2017 International Conference on Trends in Electronics and Informatics (ICEI) (pp. 248–254). IEEE

  11. He H, Luo F (2020) Study of LSTM Air Quality Index Prediction Based on Forecasting Timeliness, in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing. doi: https://doi.org/10.1088/1755-1315/446/3/032113

  12. Hajek P, Olej V (2015) Predicting common air quality index – The case of czech microregions. Aerosol Air Qual Res 15(2):544–555. https://doi.org/10.4209/aaqr.2014.08.0154

    Article  Google Scholar 

  13. Liu H, Li Q, Yu D, Gu Y (2019) Air quality index and air pollutant concentration prediction based on machine learning algorithms. Appl Sci (Switzerland), vol. 9, no. 19. doi: https://doi.org/10.3390/app9194069

  14. Bhalgat P, Pitale S, Bhoite S (2019) Air Quality Prediction using Machine Learning Algorithms. Intl J Comput Appl Technol Res 8(9):367–370. https://doi.org/10.7753/ijcatr0809.1006

    Article  Google Scholar 

  15. Ameer S et al (2019) Comparative Analysis of Machine Learning Techniques for Predicting Air Quality in Smart Cities. IEEE Access 7:128325–128338. https://doi.org/10.1109/ACCESS.2019.2925082

    Article  Google Scholar 

  16. Soh PW, Chang JW, Huang JW (Jun. 2018) Adaptive Deep Learning-Based Air Quality Prediction Model Using the Most Relevant Spatial-Temporal Relations. IEEE Access 6:38186–38199. https://doi.org/10.1109/ACCESS.2018.2849820

    Article  Google Scholar 

  17. Castelli M, Clemente FM, Popovič A, Silva S, Vanneschi L (2020) A Machine Learning Approach to Predict Air Quality in California. Complexity, 2020. doi: https://doi.org/10.1155/2020/8049504.

  18. Chang YS, Chiao HT, Abimannan S, Huang YP, Tsai YT, Lin KM (2020) An LSTM-based aggregated model for air pollution forecasting. Atmos Pollut Res 11(8):1451–1463. https://doi.org/10.1016/j.apr.2020.05.015

    Article  Google Scholar 

  19. Kumar A, Goyal P (2011) Forecasting of daily air quality index in Delhi. Sci Total Environ 409(24):5517–5523. https://doi.org/10.1016/j.scitotenv.2011.08.069

    Article  Google Scholar 

  20. Mahanta S, Ramakrishnudu T, Jha RR, Tailor N (2019) Urban air quality prediction using regression analysis. In TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (pp. 1118–1123). IEEE

  21. Méndez M, Merayo MG, Núñez M (2023) Machine learning algorithms to forecast air quality: a survey, Artif Intell Rev, doi: https://doi.org/10.1007/s10462-023-10424-4

  22. Suganya S, Meyyappan T (2023) Prediction of the level of air pollution using adaptive neuro-fuzzy inference system, Multimed Tools Appl, doi: https://doi.org/10.1007/s11042-023-15046-0

  23. Dutta J, Roy S (2021) IndoorSense: context based indoor pollutant prediction using SARIMAX model. Multimed Tools Appl 80(13):19989–20018. https://doi.org/10.1007/s11042-021-10666-w

    Article  Google Scholar 

  24. Pouyanfar S et al. (2018) A survey on deep learning: Algorithms, techniques, and applications, ACM Computing Surveys, vol. 51, no. 5. Association for Computing Machinery, Aug. 01. doi: https://doi.org/10.1145/3234150

  25. C3S (2017) Copernicus Climate Change Service, https://climate.copernicus.eu/ Accessed on 20 May 2020

  26. CCR (2020) Central Control Room for Air Quality Management, National Air Quality Index. https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing . Accessed 27 September 2020

  27. CPCB (2020) Central Pollution Control Board, Air Quality Data https://app.cpcbccr.com/AQI_India_Iframe/ Accessed 23 May 2020

  28. EVC (2019) Air Quality & How to Measure It: The Air Quality Index. https://environmental-conscience.com/air-quality-and-air-quality-index Accessed 23 December 2019

  29. MODIS (2020) NASA, Moderate Resolution Imaging Spectroradiometer. https://modis.gsfc.nasa.gov. Accessed 28 May 2020

  30. US EPA (2020) United States Environmental Protection Agency, Air Data Basic Information https://www.epa.gov/outdoor-air-quality-data/air-data-basic-information Accessed 28 May 2020

  31. Gispub.epa.gov (2020) Airnow Interactive Map. [online] Available at: <https://gispub.epa.gov/airnow/> [Accessed 27 September 2020]

  32. World's Air Pollution: Real-Time Air Quality Index. [online] waqi.info. Available at: <https://waqi.info/#/c/11.594/48.207/2.7z> [Accessed 27 September 2020]

  33. Aqi.in. (2020) AQI India: Real-Time Air Quality Index | Air Pollution Level. [online] Available at: https://www.aqi.in/ [Accessed 27 September 2020]

  34. AirVisual (2020) Airvisual Earth - 3D Real-Time Air Pollution Map. [online] Available at: https://www.iqair.com/earth [Accessed 27 September 2020]

  35. project, T., (2020) World Air Pollution Forecast. [online] waqi.info. Available at: <https://waqi.info/forecast/#/> [Accessed 27 September 2020]

  36. Safar.tropmet.res.in (2020) SAFAR - India. [online] Available at: http://safar.tropmet.res.in/FORECASTING-46-4-Details [Accessed 27 September 2020]

  37. Breezometer.com. 2020. Live Air Quality & Forecast Pollution - Breezometer. [online] Available at: https://breezometer.com/air-quality-map/air-quality?lat=22.9734229&lon=78.6568942 [Accessed 27 September 2020].

  38. Google.com. 2020. Air Quality. [online] Available at: https://www.google.com/earth/outreach/special-projects/air-quality/ [Accessed 27 September 2020].

  39. Docs.python.org. 2020. The Python Language Reference — Python 3.8.6Rc1 Documentation. [online] Available at: https://docs.python.org/3/reference/ [Accessed 27 September 2020].

  40. Team, K., (2020) Keras Documentation: Keras API Reference. [online] Keras.io. Available at: https://keras.io/api/ [Accessed 27 September 2020]

  41. TensorFlow. 2020. API Documentation | Tensorflow Core V2.3.0. [online] Available at: https://www.tensorflow.org/api_docs [Accessed 27 September 2020].

  42. Agrawal R, Paprzycki M, Gupta N, eds. (2020) Big data, IoT, and machine learning: Tools and applications. CRC Press

  43. Singh M et al. (2021) Quantum artificial intelligence for the science of climate change. ar**v preprint ar**v:2108.10855

  44. Pollution.org, 2020, Global Pollution Map. [online] Available at: <https://www.pollution.org/> [Accessed 27 September 2020]

  45. Ojagh S, Cauteruccio F, Terracina G, Liang SH (2021) Enhanced air quality prediction by edge-based spatiotemporal data preprocessing. Comput Electr Eng 96:107572

    Article  Google Scholar 

  46. Liu H, Li Q, Yu D, Gu Y (2019) Air quality index and air pollutant concentration prediction based on machine learning algorithms. Appl Sci 9(19):4069

    Article  Google Scholar 

  47. Chen J, Yuan C, Dong S, Feng J, Wang H (2023) A novel spatiotemporal multigraph convolutional network for air pollution prediction. Applied Intelligence, 1-14

  48. Huang Y, Yu J, Dai X, Huang Z, Li Y (2022) Air-quality prediction based on the EMD–IPSO–LSTM combination model. Sustainability 14(9):4889

    Article  Google Scholar 

  49. Sharma E, Deo RC, Prasad R, Parisi AV, Raj N (2020) Deep air quality forecasts: suspended particulate matter modeling with convolutional neural and long short-term memory networks. IEEE Access 8:209503–209516

    Article  Google Scholar 

  50. Xu X, Yoneda M (2019) Multitask air-quality prediction based on LSTM-autoencoder model. IEEE Trans Cybern 51(5):2577–2586

    Article  Google Scholar 

  51. Zhang Y, Wang Y, Gao M, Ma Q, Zhao J, Zhang R, … Huang L (2019) A predictive data feature exploration-based air quality prediction approach. IEEE Access 7:30732–30743

    Article  Google Scholar 

  52. Kotsiantis SB, Kanellopoulos D, Pintelas PE (2006) Data preprocessing for supervised leaning. Int J Comput Sci 1(2):111–117

    Google Scholar 

Download references

Acknowledgements

The authors thank CPCB, New Delhi, for providing us with the website to get the air quality data.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to the study conception, methodology and result analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shelly Sachdeva.

Ethics declarations

Ethics approval and consent to participate

NA

Consent for publication

NA

Competing interests

There are no competing interests

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachdeva, S., Singh, H., Bhatia, S. et al. An integrated framework for predicting air quality index using pollutant concentration and meteorological data. Multimed Tools Appl 83, 46967–46996 (2024). https://doi.org/10.1007/s11042-023-17432-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-17432-0

Keywords

Navigation