Log in

Cryptanalysis of DRPE using complex S-Box based on linear canonical transform

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

During recent decades, double random phase encoding grasped more attention for researchers. To achieve nonlinearity, it had been done with random S-Box. We exhibit this involvement that DRPE system is much vulnerable in the above methodology. Concatenating anything with DRPE needs an imaginary value, wherein S-Box unsuccessful in it. Used S-Box has been reformed into various sizes. Due to this scenario, S-Box values are replicating. So, complex S-Box has been employed and proposed size of the S-Box is similar to an input image. Numerical simulations such as performance analysis, histogram analysis and 3D plot analysis have been performed out to validate the practicability and trustworthiness of traditional DRPE system with complex S-Box. Moreover, in order to check the cryptanalysis, much other analysis done such as occlusion attack, noise attack, chosen plaintext analysis and sensitivity analysis also accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abirami G, Venkataraman R (2019, December) Performance analysis of abac and abac with trust (abac-t) in fine grained access control model. In: 2019 11th international conference on advanced computing (ICoAC). IEEE. pp. 372-375. https://doi.org/10.1109/ICoAC48765.2019.246870

  2. Abirami G, Venkataraman R (2019) Attribute based access control with trust calculation (ABAC-T) for decision policies of health Care in Pervasive Environment. IJITEE 8

  3. Abirami G, Venkataraman R (2021) Performance analysis of the dynamic trust model algorithm using the fuzzy inference system for access control. Comput Electr Eng 92:107132. https://doi.org/10.1016/j.compeleceng.2021.107132

    Article  Google Scholar 

  4. Abuturab MR (2012) Securing color image using discrete cosine transform in gyrator transform domain structured-phase encoding. Opt Lasers Eng 50(10):1383–1390

    Google Scholar 

  5. Abuturab MR (2012) Color information security system using discrete cosine transform in gyrator transform domain radial-Hilbert phase encoding. Opt Lasers Eng 50(9):1209–1216

    Google Scholar 

  6. Abuturab MR (2018) Asymmetric multiple information cryptosystem based on chaotic spiral phase mask and random spectrum decomposition. Opt Laser Technol 98:298–308. https://doi.org/10.1016/j.optlastec.2017.08.010

    Article  Google Scholar 

  7. Carnicer A, Montes-Usategui M, Arcos S, Juvells I (2005) Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys. Opt Lett 30(13):1644–1646

    Google Scholar 

  8. Chen L, Zhao D (2006) Optical image encryption with Hartley transforms. Opt Lett 31(23):3438–3440

    Google Scholar 

  9. Chowdhary CL, Patel PV, Kathrotia KJ, Attique M, Perumal K, Ijaz MF (2020) Analytical study of hybrid techniques for image encryption and decryption. Sensors 20(18):5162. https://doi.org/10.3390/s20185162

    Article  Google Scholar 

  10. Devaraj P, Kavitha C (2016) An image encryption scheme using dynamic S-boxes. Nonlinear Dyn 86(2):927–940. https://doi.org/10.1007/s11071-016-2934-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Dhaka VS, Meena SV, Rani G, Sinwar D, Ijaz MF, Woźniak M (2021) A survey of deep convolutional neural networks applied for prediction of plant leaf diseases. Sensors 21(14):4749. https://doi.org/10.3390/s21144749

    Article  Google Scholar 

  12. Farwa S, Muhammad N, Shah T, Ahmad S (2017) A novel image encryption based on algebraic S-box and Arnold transform. 3D Res 8(3):1–14. https://doi.org/10.1007/s13319-017-0135-x

    Article  Google Scholar 

  13. Girija R, Kumar P (2016, December) Walsh Hadamard transform and cryptographic properties in stream cipher. In: 2016 2nd international conference on contemporary computing and informatics (IC3I). IEEE. pp. 199-203

  14. Girija R, Singh H (2017, October) A new substitution-permutation network cipher using Walsh Hadamard transform. In: 2017 international conference on computing and communication Technologies for Smart Nation (IC3TSN). IEEE. pp. 168-172

  15. Girija R, Singh H (2018) Design of a novel pseudo random generator based on Walsh Hadamard transform and bi S-boxes. Procedia Comput Sci 132:795–804

    Google Scholar 

  16. Girija R, Singh H (2018) A cryptosystem based on deterministic phase masks and fractional Fourier transform deploying singular value decomposition. Opt Quant Electron 50(5):1–24

    Google Scholar 

  17. Girija R, Singh H (2018) Symmetric cryptosystem based on chaos structured phase masks and equal modulus decomposition using fractional Fourier transform. 3D Res 9(3):1–20. https://doi.org/10.1007/s13319-018-0192-9

    Article  Google Scholar 

  18. Girija R, Singh H (2018) Enhancing security of double random phase encoding based on random S-box. 3D Res 9(2):1–20. https://doi.org/10.1007/s13319-018-0165-z

    Article  Google Scholar 

  19. Girija R, Singh H (2019) Triple-level cryptosystem using deterministic masks and modified gerchberg-saxton iterative algorithm in fractional Hartley domain by positioning singular value decomposition. Optik 187:238–257

    Google Scholar 

  20. Girija R, Singh H (2019) An asymmetric cryptosystem based on the random weighted singular value decomposition and fractional Hartley domain. Multimed Tools Appl 79:34717–34735. https://doi.org/10.1007/s11042-019-7733-y

    Article  Google Scholar 

  21. Girija R, Anshula, Singh H (2021) Security-enhanced optical nonlinear cryptosystem based on modified Gerchberg–Saxton iterative algorithm. Optik 244:167568. https://doi.org/10.1016/j.ijleo.2021.167568

    Article  Google Scholar 

  22. Guo C, Muniraj I, Sheridan JT (2016) Phase-retrieval-based attacks on linear-canonical-transform-based DRPE systems. Appl Opt 55(17):4720–4728

    Google Scholar 

  23. Healy JJ (2017) Simulating first order optical systems—algorithms for and composition of discrete linear canonical transforms. J Opt 20(1):014008

    Google Scholar 

  24. Hennelly B, Sheridan JT (2003) Optical image encryption by random shifting in fractional Fourier domains. Opt Lett 28(4):269–271

    Google Scholar 

  25. Hennelly BM, Sheridan JT (2005) Fast numerical algorithm for the linear canonical transform. J Opt Soc Am 22(5):928–937

    MathSciNet  Google Scholar 

  26. Huang ZJ, Cheng S, Gong LH, Zhou NR (2020) Nonlinear optical multi-image encryption scheme with two-dimensional linear canonical transform. Opt Lasers Eng 124:105821

    Google Scholar 

  27. Hwang HE, Han P (2006) Fast algorithm of phase masks for image encryption in the Fresnel domain. J Opt Soc Am 23(8):1870–1874

  28. Ijaz MF, Attique M, Son Y (2020) Data-driven cervical cancer prediction model with outlier detection and over-sampling methods. Sensors 20(10):2809. https://doi.org/10.3390/s20102809

    Article  Google Scholar 

  29. Javidi B, Carnicer A, Yamaguchi M, Nomura T, Pérez-Cabré E, Millán MS et al (2016) Roadmap on optical security. J Opt 18(8):083001

    Google Scholar 

  30. Kumar P, Joseph J, Singh K (2016) Double random phase encoding based optical encryption systems using some linear canonical transforms: weaknesses and countermeasures. In: Linear canonical transforms. Springer, New York, pp 367–396

    MATH  Google Scholar 

  31. Kumari E, Singh P, Mukherjee S, Purohit GN (2020) Analysis of triple random phase encoding cryptosystem in Fresnel domain. Results Opt 1:100009. https://doi.org/10.1016/j.rio.2020.100009

    Article  Google Scholar 

  32. Liansheng S, Bei Z, **aojuan N, Ailing T (2016) Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain. Opt Express 24(1):499–515

    Google Scholar 

  33. Liu S, Mi Q, Zhu B (2001) Optical image encryption with multistage and multichannel fractional Fourier-domain filtering. Opt Lett 26(16):1242–1244

    Google Scholar 

  34. Liu S, Yu L, Zhu B (2001) Optical image encryption by cascaded fractional Fourier transforms with random phase filtering. Opt Commun 187(1–3):57–63

    Google Scholar 

  35. Liu Z, Xu L, Liu T, Chen H, Li P, Lin C, Liu S (2011) Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains. Opt Commun 284(1):123–128

    Google Scholar 

  36. Liu H, Kadir A, Gong P (2015) A fast color image encryption scheme using one-time S-boxes based on complex chaotic system and random noise. Opt Commun 338:340–347. https://doi.org/10.1016/j.optcom.2014.10.021

    Article  Google Scholar 

  37. Lu D, ** W (2011) Color image encryption based on joint fractional Fourier transform correlator. Opt Eng 50(6):068201

    Google Scholar 

  38. Maan P, Singh H (2018) Non-linear cryptosystem for image encryption using radial Hilbert mask in fractional Fourier transform domain. 3D Res 9:53. https://doi.org/10.1007/s13319-018-0205-8

  39. Matoba O, Javidi B (1999) Encrypted optical memory system using three-dimensional keys in the Fresnel domain. Opt Lett 24(11):762–764

    Google Scholar 

  40. Nishchal NK, Joseph J, Singh K (2003) Fully phase encryption using fractional Fourier transform. Opt Eng 42(6):1583–1588

    Google Scholar 

  41. Panigrahi R, Borah S, Bhoi AK, Ijaz MF, Pramanik M, Kumar Y, Jhaveri RH (2021) A consolidated decision tree-based intrusion detection system for binary and multiclass imbalanced datasets. Mathematics 9(7):751. https://doi.org/10.3390/math9070751

    Article  Google Scholar 

  42. Panigrahi R, Borah S, Bhoi AK, Ijaz MF, Pramanik M, Jhaveri RH, Chowdhary CL (2021) Performance assessment of supervised classifiers for designing intrusion detection systems: a comprehensive review and recommendations for future research. Mathematics 9(6):690. https://doi.org/10.3390/math9060690

    Article  Google Scholar 

  43. Pei SC, Huang SG (2015) Fast discrete linear canonical transform based on CM-CC-CM decomposition and FFT. IEEE Trans Signal Process 64(4):855–866

    MathSciNet  MATH  Google Scholar 

  44. Peng X, Wei H, Zhang P (2006) Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain. Opt Lett 31(22):3261–3263

    Google Scholar 

  45. Qin W, Peng X (2009) Vulnerability to known-plaintext attack of optical encryption schemes based on two fractional Fourier transform order keys and double random phase keys. J Opt A Pure Appl Opt 11(7):075402

    Google Scholar 

  46. Rajput SK, Nishchal NK (2014) Fresnel domain nonlinear optical image encryption scheme based on Gerchberg–Saxton phase-retrieval algorithm. Appl Opt 53(3):418–425

    Google Scholar 

  47. Rakheja P, Singh P, Vig R (2020) An asymmetric image encryption mechanism using QR decomposition in hybrid multi-resolution wavelet domain. Opt Lasers Eng 134:106177. https://doi.org/10.1016/j.optlaseng.2020.106177

    Article  Google Scholar 

  48. Refregier P, Javidi B (1995) Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett 20(7):767–769

    Google Scholar 

  49. Rodrigo JA, Alieva T, Calvo ML (2007) Gyrator transform: properties and applications. Opt Express 15(5):2190–2203

    Google Scholar 

  50. Singh N, Sinha A (2008) Optical image encryption using fractional Fourier transform and chaos. Opt Lasers Eng 46(2):117–123

    Google Scholar 

  51. Singh H, Yadav AK, Vashisth S, Singh K (2014) Fully phase image encryption using double random-structured phase masks in gyrator domain. Appl Opt 53(28):6472–6481

    Google Scholar 

  52. Singh H, Yadav AK, Vashisth S, Singh K (2015) Double phase-image encryption using gyrator transforms, and structured phase mask in the frequency plane. Opt Lasers Eng 67:145–156

    Google Scholar 

  53. Singh P, Yadav AK, Singh K (2017) Phase image encryption in the fractional Hartley domain using Arnold transform and singular value decomposition. Opt Lasers Eng 91:187–195

    Google Scholar 

  54. Situ G, Zhang J (2004) Double random-phase encoding in the Fresnel domain. Opt Lett 29(14):1584–1586

    Google Scholar 

  55. Srinivasu PN, SivaSai JG, Ijaz MF, Bhoi AK, Kim W, Kang JJ (2021) Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors 21(8):2852. https://doi.org/10.3390/s21082852

    Article  Google Scholar 

  56. Starchenko AP (2011) Using the discrete cosine transformation to construct a hologram for the task of embedding hidden watermarks. J Opt Technol 78(3):176–179

    Google Scholar 

  57. Tamang J, Nkapkop JDD, Ijaz MF, Prasad PK, Tsafack N, Saha A, … Son Y (2021) Dynamical properties of ion-acoustic waves in space plasma and its application to image encryption. IEEE Access 9:18762–18782. https://doi.org/10.3390/sym14030493

    Article  Google Scholar 

  58. Tao R, **n Y, Wang Y (2007) Double image encryption based on random phase encoding in the fractional Fourier domain. Opt Express 15(24):16067–16079

    Google Scholar 

  59. Unnikrishnan G, Singh K (2001) Optical encryption using quadratic phase systems. Opt Commun 193(1–6):51–67. https://doi.org/10.1016/S0030-4018(01)01224-X

    Article  Google Scholar 

  60. Unnikrishnan G, Joseph J, Singh K (2000) Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt Lett 25(12):887–889

    Google Scholar 

  61. Wang Q, Guo Q, Lei L, Zhou J (2013) Multiple-image encryption based on interference principle and phase-only mask multiplexing in Fresnel transform domain. Appl Opt 52(28):6849–6857

    Google Scholar 

  62. Wang Q, Guo Q, Zhou J (2013) Multiple-image encryption using polarized light encoding and the optical interference principle in the Fresnel-transform domain. Appl Opt 52(36):8854–8863

    Google Scholar 

  63. Wei D, Wang R, Li YM (2016) Random discrete linear canonical transform. JOSA A 33(12):2470–2476

    Google Scholar 

  64. Wu J, Liu W, Liu Z, Liu S (2015) Correlated-imaging-based chosen plaintext attack on general cryptosystems composed of linear canonical transforms and phase encodings. Opt Commun 338:164–167

    Google Scholar 

  65. Yadav PL, Singh H (2018) Optical double image hiding in the fractional Hartley transform using structured phase filter and Arnold transform. 3D Res 9(2):1–19. https://doi.org/10.1007/s13319-018-0172-0

    Article  Google Scholar 

  66. Zamrani W, Ahouzi E, Lizana A, Campos J, Yzuel MJ (2016) Optical image encryption technique based on deterministic phase masks. Opt Eng 55(10):103108

    Google Scholar 

  67. Zhao J, Lu H, Song X, Li J, Ma Y (2005) Optical image encryption based on multistage fractional Fourier transforms and pixel scrambling technique. Opt Commun 249(4–6):493–499

    Google Scholar 

  68. Zhao L, Healy JJ, Sheridan JT (2015) Constraints on additivity of the 1D discrete linear canonical transform. Appl Opt 54(33):9960–9965

    Google Scholar 

  69. Zhao L, Muniraj I, Healy JJ, Malallah RE, Cui XG, Ryle JP, Sheridan JT (2017, May) 2D non-separable linear canonical transform (2D-NS-LCT) based cryptography. In: Holography: advances and modern trends V. International Society for Optics and Photonics. Vol. 10233, p. 102331B

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Girija.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girija, R., Singh, H. & Abirami, G. Cryptanalysis of DRPE using complex S-Box based on linear canonical transform. Multimed Tools Appl 82, 12151–12166 (2023). https://doi.org/10.1007/s11042-022-13752-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13752-9

Keywords

Navigation