Log in

An optimization-based approach to gamma correction parameter estimation for low-light image enhancement

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We propose an efficient low-light image enhancement algorithm based on an optimization-based approach for gamma correction parameter estimation. We first separate an input color image into the luminance and chrominance channels, and then normalize the luminance channel using the logarithmic function to make it consistent with the human perception. Then, we divide the luminance image into dark and bright regions, and estimate the optimal gamma correction parameter for each region independently. Specifically, based on the statistical properties of the input image, we formulate a convex optimization problem that maximizes the image contrast subject to the constraint on the gamma value. By efficiently solving the optimization problems using the convex optimization theories, we obtain the optimal gamma parameter for each region. Finally, we obtain an enhanced image by merging the independently enhanced dark and bright regions with the optimal gamma parameters. Experimental results on real-world images demonstrate that the proposed algorithm can provide higher enhancement performance than state-of-the-art algorithms in terms of both subjective and objective evaluations, while providing a substantial improvement in speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://github.com/gitofinho/Optimal-Gamma-Correction-Parameter-Estimation

References

  1. Agaian SS, Silver B, Panetta KA (2007) Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Trans Image Process 16(3):741–758

    Article  MathSciNet  Google Scholar 

  2. Arici T, Dikbas S, Altunbasak Y (2009) A histogram modification framework and its application for image contrast enhancement. IEEE Trans Image Process 18(9):1921–1935

    Article  MathSciNet  Google Scholar 

  3. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge Univ. Press, Cambridge U.K

    Book  Google Scholar 

  4. Cai J, Gu S, Zhang L (2018) Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans Image Process 27(4):2049–2062

    Article  MathSciNet  Google Scholar 

  5. Celik T (2014) Spatial entropy-based global and local image contrast enhancement. IEEE Trans Image Process 23(12):5298–5308

    Article  MathSciNet  Google Scholar 

  6. Celik T (2016) Spatial mutual information and pagerank-based contrast enhancement and quality-aware relative contrast measure. IEEE Trans Image Process 25(10):4719–4728

    Article  MathSciNet  Google Scholar 

  7. Chang Y, Jung C, Ke P, Song H, Hwang J (2018) Automatic contrast-limited adaptive histogram equalization with dual gamma correction. IEEE Access 6:11782–11792

    Article  Google Scholar 

  8. Chen C, Chen Q, Xu J, Koltun V (2018) Learning to see in the dark. In: Proc. IEEE conf. Comput. Vis. Pattern recognit., pp 3291–3300

  9. Farid H (2001) Blind inverse gamma correction. IEEE Trans Image Process 10(10):1428–1433

    Article  Google Scholar 

  10. Fu Q, Jung C, Xu K (2018) Retinex-based perceptual contrast enhancement in images using luminance adaptation. IEEE Access 6:61277–61286

    Article  Google Scholar 

  11. Gonzalez RC, Woods R (2007) Digital image processing, third edn. Prentice-Hall, Englewood Cliffs, NJ, USA

    Google Scholar 

  12. Guo CG, Li C, Guo J, Loy CC, Hou J, Kwong S, Cong R (2020) Zero-reference deep curve estimation for low-light image enhancement Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp 1780–1789

  13. Guo X, Li Y, Ling H (2017) LIME: Low-Light image enhancement via illumination map estimation. IEEE Trans Image Process 26(2):982–993

    Article  MathSciNet  Google Scholar 

  14. Hao S, Feng Z, Guo Y (2018) Low-light image enhancement with a refined illumination map. Multimed Tools Appl 77:29639–29650

    Article  Google Scholar 

  15. Huang S, Cheng F, Chiu Y (2013) Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans Image Process 22(3):1032–1041

    Article  MathSciNet  Google Scholar 

  16. Ju M, Ding C, Zhang D, Guo YJ (2018) Gamma-correction-based visibility restoration for single hazy images. IEEE Signal Process Lett 25 (7):1084–1088

    Article  Google Scholar 

  17. Kim D, Kim C (2017) Contrast enhancement using combined 1-D and 2-D histogram-based techniques. IEEE Signal Process Lett 24(6):804–808

    Article  Google Scholar 

  18. Kim YT (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43(1):1–8

    Article  Google Scholar 

  19. Lee C, Lam EY (2016) Computationally efficient truncated nuclear norm minimization for high dynamic range imaging. IEEE Trans Image Process 25(9):4145–4157

    Article  MathSciNet  Google Scholar 

  20. Lee C, Lam EY (2018) Computationally efficient brightness compensation and contrast enhancement for transmissive liquid crystal displays. J Real-Time Image Process 14(4):733–741

    Article  Google Scholar 

  21. Lee C, Lee C, Kim CS (2013) Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans Image Process 22 (12):5372–5384

    Article  Google Scholar 

  22. Lee C, Lee C, Lee YY, Kim CS (2012) Power-constrained contrast enhancement for emissive displays based on histogram equalization. IEEE Trans Image Process 21(1):80–93

    Article  MathSciNet  Google Scholar 

  23. Lim J, Heo M, Lee C, Kim CS (2017) Contrast enhancement of noisy low-light images based on structure-texture-noise decomposition. J Vis Commun Image Represent 45(5):107–121

    Article  Google Scholar 

  24. Loh YP, Chan CS (2019) Getting to know low-light images with the exclusively dark dataset. Comput Vis Image Understand 178:30–42

    Article  Google Scholar 

  25. Loh YP, Liang X, Chan CS (2019) Low-light image enhancement using Gaussian process for features retrieval. Signal Process Image Commun 74:175–190

    Article  Google Scholar 

  26. Mittal A, Soundararajan R, Bovik AC (2013) Making a “completely blind” image quality analyzer. IEEE Signal Process Lett 20(3):209–212

    Article  Google Scholar 

  27. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, Berlin, Germany

    MATH  Google Scholar 

  28. Park S, Yu S, Kim M, Park K, Paik J (2018) Dual autoencoder network for retinex-based low-light image enhancement. IEEE Access 6:22084–22093

    Article  Google Scholar 

  29. Rahman S, Rahman MM, A-Al-Wadud M, Al-Quaderi GD, Shoyaib M (2016) An adaptive gamma correction for image enhancement. EURASIP J. Image Video Process 2016(35)

  30. Reinhard E, Ward G, Debevec P, Pattanaik S, Heidrich W (2010) High dynamic range imaging: acquisition, display, and image-based Lighting, second edn. Morgan Kaufmann

  31. Ren W, Liu S, Ma L, Xu Q, Xu X, Cao X, Du J, Yang MH (2019) Low-light image enhancement via a deep hybrid network. IEEE Trans Image Process 28(9):4364–4375

    Article  MathSciNet  Google Scholar 

  32. Ren X, Yang W, Cheng WH, Liu J (2020) LR3M: Robust low-light enhancement via low-rank regularized retinex model. IEEE Trans Image Process 29:5862–5876

    Article  MathSciNet  Google Scholar 

  33. Tan SF, Isa NAM (2019) Exposure based multi-histogram equalization contrast enhancement for non-uniform illumination images. IEEE Access 7:70842–70861

    Article  Google Scholar 

  34. Tao L, Zhu C, Song J, Lu T, Jia H, **e X (2017) Low-light image enhancement using CNN and bright channel prior. In: Proc. IEEE Int. Conf. Image process., pp. 3215–3219

  35. Wang S, Ma K, Yeganeh H, Wang Z, Lin W (2015) A patch-structure representation method for quality assessment of contrast changed images. IEEE Signal Process Lett 22(12):2387–2390

    Article  Google Scholar 

  36. Yang KF, Li H, Kuang H, Li CY, Li YJ (2019) An adaptive method for image dynamic range adjustment. IEEE Trans. Circuits Syst Video Technol 29(3):640–652

    Article  Google Scholar 

  37. Yang W, Wang S, Fang Y, Wang Y, Liu J (2020) From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp 3063–3072

  38. Yue H, Yang J, Sun X, Wu F, Hou C (2017) Contrast enhancement based on intrinsic image decomposition. IEEE Trans Image Process 26 (8):3981–3994

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. NRF-2019R1A2C4069806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul Lee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, I., Lee, C. An optimization-based approach to gamma correction parameter estimation for low-light image enhancement. Multimed Tools Appl 80, 18027–18042 (2021). https://doi.org/10.1007/s11042-021-10614-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10614-8

Keywords

Navigation