Log in

Cross-spectral palmprint recognition with low-rank canonical correlation analysis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

As an important biometric trait, palmprint has been widely studied in individual identification. With the popularity of palmprint recognition, many palmprint acquisition devices with different spectra have been designed and applied into practical application, so it is difficult to ensure that the spectra of collectors are consistent during training and testing, which leads to the challenge of cross-spectral palmprint images classification. To address this problem, this paper presents a domain adaptive method based on subspace learning, i.e., low-rank canonical correlation analysis (LRCCA). The proposed method seeks to find the common subspace of cross-spectral palmprint images and capture the low-rank structural relationships in data simultaneously. We perform the experiment on the multi-spectral palmprint dataset with 12 cross-spectral palmprint recognition tasks. The experimental results show that our method achieves the promising results in both identification and verification and outperforms the classical transfer learning methods and deep canonical component analysis (DCCA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aberni Y, Boubchir L, Daachi B (2017) Multispectral palmprint recognition: a state-of-the-art review. In: 2017 40th International conference on telecommunications and signal processing (TSP), pp 793–797

  2. Akaho S (2006) A kernel method for canonical correlation analysis. Int Meet Psychom Soc 383(4):1343–1358

    Google Scholar 

  3. Andrew G, Arora R, Livescu K, Bilmes J (2013) Deep canonical correlation analysis, vol 28. International conference on machine learning (ICML), pp 1247–1255

  4. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7(1):2399–2434

    MathSciNet  MATH  Google Scholar 

  5. Cai J-F, Candès EJ, Shen Z (2010) A singular value Thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  MathSciNet  Google Scholar 

  6. Connie T, ** ATB, Ong MGK, Ling DNC (2005) An automated palmprint recognition system. Image Vis Comput 23(5):501–515

    Article  Google Scholar 

  7. De Bie T, De Moor B (2003) On the regularization of canonical correlation analysis. Proceedings of the 4th International symposium on independent component analysis and blind signal separation (ICA), pp 785–790

  8. Duan L, Tsang IW, Xu D (2012) Domain transfer multiple kernel learning. IEEE Trans Pattern Anal Mach Intell 34(3):465–479

    Article  Google Scholar 

  9. Fei L, Xu Y, Zhang B, Fang X, Wen J (2016) Low-rank representation integrated with principal line distance for contactless palmprint recognition. Neurocomputing 218:264–275

    Article  Google Scholar 

  10. Fei L, Xu Y, Zhang D (2016) Half-orientation extraction of palmprint features. Pattern Recogn Lett 69:35–41

    Article  Google Scholar 

  11. Fernando B, Habrard A, Sebban M, Tuytelaars T (2013) Unsupervised visual domain adaptation using subspace alignment. 2013 IEEE International conference on computer vision, pp 2960–2967

  12. Ghifary M, Kleijn WB, Zhang M (2014) Domain adaptive neural networks for object recognition. Lecture notes in computer science, In, pp 898–904

    Google Scholar 

  13. Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. 2012 IEEE conference on computer vision and pattern recognition, pp 2066–2073

  14. Gopalan R, Li R, Chellappa R (2011) Domain adaptation for object recognition: an unsupervised approach. 2011 International conference on computer vision, pp 999–1006

  15. Grey DR, Mardia KV, Kent JT, Bibby JM (1981) Multivariate analysis. Math. Gaz. 65(431):75

    Article  Google Scholar 

  16. Hardoon DR, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16(12):2639–2664

    Article  Google Scholar 

  17. Hoffman J, Rodner E, Donahue J, Kulis B, Saenko K (2014) Asymmetric and category invariant feature transformations for domain adaptation. Int J Comput Vis 109(1–2):28–41

    Article  MathSciNet  Google Scholar 

  18. Hong L, Wan Y, Jain A (1998) Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans Pattern Anal Mach Intell 20(8):777–789

    Article  Google Scholar 

  19. Hotelling H (1936) Relations between two sets of variates. Biometrika 28(3/4):321

    Article  Google Scholar 

  20. Jhuo I, Liu D, Lee D, Chang S (2012) Robust visual domain adaptation with low-rank reconstruction. In: 2012 IEEE conference on computer vision and pattern recognition, pp 2168–2175

  21. Jiang J, Zhai C (2007) Instance weighting for domain adaptation in NLP. Proceedings of the 45th annual meeting of the association of computational linguistics:264–271

  22. Kong AW-K, Zhang D (2004) Competitive coding scheme for palmprint verification, vol 1. Proceedings of the 17th international conference on pattern recognition (ICPR), pp 520–523

  23. Laadjel M, Bouridane A, Nibouche O, Kurugollu F, Al-Maadeed S (2013) An improved palmprint recognition system using iris features. J Real-Time Image Process 8(3):253–263

    Article  Google Scholar 

  24. Lee C, Jang M-G (2010) A modified fixed-threshold SMO for 1-slack structural SVMs. ETRI J 32(1):120–128

    Article  MathSciNet  Google Scholar 

  25. Li J, Zhao J, Lu K (2016) Joint feature selection and structure preservation for domain adaptation. IJCAI international joint conference on artificial intelligence, In

    Google Scholar 

  26. Li J, Wu Y, Lu K (2017) Structured domain adaptation. IEEE Trans. Circuits Syst. Video Technol. 27(8):1700–1713

    Article  Google Scholar 

  27. Li J, Wu Y, Zhao J, Lu K (2017) Low-rank discriminant embedding for multiview learning. IEEE Trans Cybern 47(11):3516–3529

    Article  Google Scholar 

  28. Li C, Benezeth Y, Nakamura K, Gomez R, Yang F (2018) A robust multispectral palmprint matching algorithm and its evaluation for FPGA applications. J Syst Archit 88:43–53

    Article  Google Scholar 

  29. Long M, Wang J, Cao Y, Sun J, Yu PS (2016) Deep learning of transferable representation for scalable domain adaptation. IEEE Trans Knowl Data Eng 28(8):2027–2040

    Article  Google Scholar 

  30. Lu G, Zhang D, Wang K (2003) Palmprint recognition using eigenpalms features. Pattern Recogn Lett 24(9–10):1463–1467

    Article  Google Scholar 

  31. Lu Y, Yuan C, Lai Z, Li X, Zhang D, Wong WK (2019) Horizontal and vertical nuclear norm-based 2DLDA for image representation. IEEE Trans Circuits Syst Video Technol 29(4):941–955

    Article  Google Scholar 

  32. Luo Y-T et al (2016) Local line directional pattern for palmprint recognition. Pattern Recogn 50:26–44

    Article  Google Scholar 

  33. Pan SJ, Tsang IW, Kwok JT, Yang Q (2009) Domain adaptation via transfer component analysis. International joint conference on artificial intelligence

  34. Pinheiro PO (2018) Unsupervised domain adaptation with similarity learning. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 8004–8013

  35. PolyU multispectral palmprint Database. [Online]. Available: http://www.comp.polyu.edu.hk/~biometrics/MultispectralPalmprint/MSP.htm

  36. Saenko K, Kulis B, Fritz M, Darrell T (2010) Adapting visual category models to new domains. In: European conference on computer vision, pp 213–226

    Google Scholar 

  37. Saito K, Watanabe K, Ushiku Y, Harada T (2017) Maximum classifier discrepancy for unsupervised domain adaptation. In: 2017 IEEE computer society conference on computer vision Work, pp 2630–2636

    Google Scholar 

  38. Shi Y, Sha F (2009) Editors, Aims & Scope. Knowl.-Based Syst. 22(8). IFC

  39. Tamrakar D, Khanna P (2016) Kernel discriminant analysis of block-wise Gaussian derivative phase pattern histogram for palmprint recognition. J Vis Commun Image Represent 40:432–448

    Article  Google Scholar 

  40. von Bünau P, Meinecke FC, Király FC, Müller K-R (2009) Finding stationary subspaces in multivariate time series. Phys Rev Lett 103(21):214101

    Article  Google Scholar 

  41. Yan K, Kou L, Zhang D (2016) Domain adaptation via maximum independence of domain features, pp 1–13

  42. Yang W, Wang Z, Zhang B (2016) Face recognition using adaptive local ternary patterns method. Neurocomputing 213:183–190

    Article  Google Scholar 

  43. Yang W, Sun C, Zheng W, Ricanek K (2017) Gender classification using 3D statistical models. Multimed Tools Appl 76(3):4491–4503

    Article  Google Scholar 

  44. Zhang L, Zhang D (2015) Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans Instrum Meas 64(7):1790–1801

    Article  Google Scholar 

  45. Zhang L, ZuoW ZD (2016) LSDT: latent sparse domain transfer learning for visual adaptation. IEEE Trans Image Process 25(3):1177–1191

    Article  MathSciNet  Google Scholar 

  46. Zhang D, Member S, Kong W (2003) Online Palmprint Identification. IEEE Trans Pattern Anal Mach Intell 25(9):1041–1050

    Article  Google Scholar 

  47. Zhang D, Guo Z, Lu G, Zhang L, Zuo W (2010) An online system of multispectral palmprint verification. IEEE Trans Instrum Meas 59(2):480–490

    Article  Google Scholar 

  48. Zhang D, Zuo W, Yue F (2012) A comparative study of palmprint recognition algorithms. ACM Comput Surv 44(1):1–37

    Article  Google Scholar 

  49. Zhang L, Liu Y, Deng P (2017) Odor recognition in multiple E-nose systems with cross-domain discriminative subspace learning. IEEE Trans Instrum Meas 66(7):1679–1692

    Article  Google Scholar 

  50. Zhang Z, Xu Y, Shao L, Yang J (2018) Discriminative block-diagonal representation learning for image recognition. IEEE Trans. Neural Networks Learn. Syst. 29(7):3111–3125

    Article  MathSciNet  Google Scholar 

  51. Zhang Z, Shao L, Xu Y, Liu L, Yang J (2018) Marginal representation learning with graph structure selfadaptation. IEEE Trans Neural Networks Learn Syst 29(10):4645–4659

    Article  MathSciNet  Google Scholar 

  52. Zhang DZL, Wang S, Huang GB, Zuo W, Yang J (2018) Manifold Criterion Guided Transfer Learning via Intermediate Domain Generation. In: IEEE transactions on neural networks and learning systems, in revision

  53. Zhang Z, Liu L, Shen F, Shen HT, Shao L (2019) Binary multi-view clustering. IEEE Trans Pattern Anal Mach Intell 41(7):1774–1782

    Article  Google Scholar 

  54. Zhou Y, Kumar A (2011) Human identification using palm-vein images. IEEE Trans Inf Forensics Secur 6(4):1259–1274

    Article  Google Scholar 

  55. Zhouchen Lin YM, Chen M, Wu L (2009) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. Department of Electrical and Computer Engineering, University of Illinois, Champaign, IL, USA, Tech. Rep. UIUC UILU-ENG-09-2214, vol 1(2)

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (Nos. 61501230, 61732006, 61876082 and 61861130366), and National Science and Technology Major Project of China (No. 2018ZX10201002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Xu, N., Zhang, Z. et al. Cross-spectral palmprint recognition with low-rank canonical correlation analysis. Multimed Tools Appl 79, 33771–33792 (2020). https://doi.org/10.1007/s11042-019-08362-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08362-x

Keywords

Navigation