Log in

The Casimir Effect from the Point of View of Algebraic Quantum Field Theory

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bär, C.: Green-hyperbolic operators on globally hyperbolic spacetimes. Comm. Math. Phys. 333(3), 1585 (2015). ar**v:1310.0738 [math-ph]

  2. Brunetti, R., Duetsch, M., Fredenhagen, K.: Perturbative Algebraic Quantum Field Theory and the Renormalization Groups. Adv. Theor. Math. Phys. 13, 1541 (2009). ar**v:0901.2038 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunetti, R., Fredenhagen, K., Ribeiro, P.L.: Algebraic Structure of Classical Field Theory I: Kinematics and Linearized Dynamics for Real Scalar Fields. ar**v:1209.2148 [math-ph]

  4. Benini, M., Dappiaggi, C., Hack, T.P.: Quantum Field Theory on Curved Backgrounds – A Primer. Int. J. Mod. Phys. A 28, 1330023 (2013). ar**v:1306.0527 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Benini, M., Dappiaggi, C., Murro, S.: Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states. J. Math. Phys. 55, 082301 (2014). ar**v:1404.4551 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Benini, M., Dappiaggi, C., Schenkel, A.: Quantum field theory on affine bundles. Annales Henri Poincare 15, 171 (2014). ar**v:1210.3457 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  7. Benini, M., Dappiaggi, C., Schenkel, A.: Quantized Abelian principal connections on Lorentzian manifolds. Commun. Math. Phys. 330, 123 (2014). ar**v:1303.2515 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Benini, M.: Optimal space of linear classical observables for Maxwell k-forms via spacelike and timelike compact de Rham cohomologies. J. Math. Phys. 57, 053502 (2016). ar**v:1401.7563 [math-ph]

  9. Brunetti, R., Fredenhagen, K.: Quantum Field Theory on Curved Backgrounds. ar**v:0901.2063 [gr-qc]

  10. Brunetti, R., Fredenhagen, K., Verch, R.: The Generally covariant locality principle: A New paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). ar**v:math-ph/0112041

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization, 1St Edn. (Eur Math. Soc., Zürich, 2007)

  12. Brown, L.S., Maclay, G.J.: Vacuum stress between conducting plates: An Image solution. Phys. Rev. 184, 1272 (1969)

    Article  ADS  Google Scholar 

  13. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Indag. Math 10, 261 (1948)

    MATH  Google Scholar 

  14. Callan, C.G. Jr., Coleman, S.R., jackiw, R.: A New improved energy - momentum tensor. Annals Phys. 59, 42 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Casimir, H.B.G., Polder, D.: The Influence of retardation on the London-van der Waals forces. Phys. Rev. 73, 360 (1948)

    Article  ADS  MATH  Google Scholar 

  16. Deutsch, D., Candelas, P.: Boundary effects in quantum field theory. Phys. Rev. D 20, 3063 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  17. Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Fewster, C.J., Higuchi, A.: Quantum field theory on certain nonglobally hyperbolic space-times. Class. Quant. Grav. 51 (1996). ar**v:gr-qc/9508051

  19. Fewster, C.J., Hunt, D.S.: Quantization of linearized gravity in cosmological vacuum spacetimes. Rev. Math. Phys. 25, 1330003 (2013). ar**v:1203.0261 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  20. Fewster, C.J., Pfenning, M.J.: A Quantum weak energy inequality for spin one fields in curved space-time. J. Math. Phys. 44, 4480 (2003). ar**v:gr-qc/0303106

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory. ar**v:1208.1428 [math-ph]

  22. Fulling, S.A., Reijsenaars, S.N.M.: Temperature, periodicity and horizons. Phys. Rep. 152, 135 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  23. Fulling, S.A.: Aspects of Quantum Field Theory in Curved Space-time. London Math. Soc. Student Texts 17, 1 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals Series and Products, 7th. Academic, New York (2007)

    MATH  Google Scholar 

  25. Haag, R., Kastler, D.: An Algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Hack, T. -P.: On the Backreaction of Scalar and Spinor Quantum Fields in Curved Spacetimes. ar**v:1008.1776 [Gr-Qc], PhD thesis, Universität Hamburg (2010)

  27. Herdegen, A.: Quantum backreaction (Casimir) effect. I. What are admissible idealizations?. Annales Henri Poincare 6, 657 (2005). ar**v:hep-th/0412132

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Herdegen, A.: Quantum backreaction (Casimir) effect. II. Scalar and electromagnetic fields. Annales Henri Poincare 7, 253 (2006). ar**v:hep-th/0507023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Herdegen, A., Stopa, M.: Global versus local Casimir effect. Annales Henri Poincare 11, 1171 (2010). ar**v:1007.2139 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223, 289 (2001). ar**v:gr-qc/0103074

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Hollands, S., Wald, R.M.: Quantum fields in curved spacetime. ar**v:1401.2026 [gr-qc]

  32. Hörmander, L.: The Analysis of Linear Partial Differential Operators I, 2nd. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  33. Kay, B.S.: Casimir effect in quantum field theory. Phys. Rev. D 20, 3052 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  34. Kay, B.S.: The Principle of locality and quantum field theory on (nonglobally hyperbolic) curved space-times. Rev. Math. Phys. SI 1, 167 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kennedy, G., Critchley, R., Dowker, J.S.: Finite Temperature Field Theory with Boundaries: Stress Tensor and Surface Action renorMalization. Annals Phys. 125, 346 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  36. ühn, H.K: Thermische Observablen gekoppelter Felder in Casimir-Effekt, Diploma Thesis in German, Universität Hamburg. available at www.desy.de/uni-th/lqp/psfiles/dipl-kuehn.ps.gz (2005)

  37. Lee, J.M.: Introduction to smooth manifolds. Springer, Berlin (2000)

    Google Scholar 

  38. Milton, K.A.: The Casimir Effect: Physical Manifestations of Zero-point Energy. World Scientific (2001)

  39. Moretti, V.: Comments on the stress energy tensor operator in curved space-time. Commun. Math. Phys. 232, 189 (2003). ar**v:gr-qc/0109048

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Niekerken, O.: Quantum and Classical Vacuum Forces at Zero and Finite Temperature, Diploma Thesis in German. Universität Hamburg, available at http://www-library.desy.de/preparch/desy/thesis/desy-thesis-09-019.pdf (2009)

  41. Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Radzikowski, M.J.: A Local to global singularity theorem for quantum field theory on curved space-time. Commun. Math. Phys. 180, 1 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Sahlmann, H., Verch, R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705 (2000). ar**v:math-ph/0002021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, Local Covariance, the Aharonov-Bohm Effect and Gauss Law. Commun. Math. Phys. 328, 625 (2014). ar**v:1211.6420 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Sommer, C.: Algebraische Charakterisierung von Randbedingungen in der Quantenfeldtheorie , Diploma Thesis in German, Universität Hamburg. available at http://www.desy.de/uni-th/lqp/psfiles/dipl-sommer.ps.gz (2006)

  46. Sopova, V., Ford, L.H.: Energy density in the Casimir effect. Phys. Rev. D 66, 045026 (2002)

    Article  ADS  Google Scholar 

  47. Wald, R.M.: General Relativity, 1st. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Dappiaggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dappiaggi, C., Nosari, G. & Pinamonti, N. The Casimir Effect from the Point of View of Algebraic Quantum Field Theory. Math Phys Anal Geom 19, 12 (2016). https://doi.org/10.1007/s11040-016-9216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-016-9216-y

Keywords

Mathematics Subject Classification (2010)

Navigation