Log in

Mir-204-5p alleviates mitochondrial dysfunction by targeting IGFBP5 in diabetic cataract

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Cataract contributes to visual impairment worldwide, and diabetes mellitus accelerates the formation and progression of cataract. Here we found that the expression level of miR-204-5p was diminished in the lens epithelium with anterior lens capsule of cataract patients compared to normal donors, and decreased more obviously in those of diabetic cataract (DC) patients. However, the contribution and mechanism of miR-204-5p during DC development remain elusive.

Methods and result

The mitochondrial membrane potential (MMP) was reduced in the lens epithelium with anterior lens capsule of DC patients and the H2O2-induced human lens epithelial cell (HLEC) cataract model, suggesting impaired mitochondrial functional capacity. Consistently, miR-204-5p knockdown by the specific inhibitor also attenuated the MMP in HLECs. Using bioinformatics and a luciferase assay, further by immunofluorescence staining and Western blot, we identified IGFBP5, an insulin-like growth factor binding protein, as a direct target of miR-204-5p in HLECs. IGFBP5 expression was upregulated in the lens epithelium with anterior lens capsule of DC patients and in the HLEC cataract model, and IGFBP5 knockdown could reverse the mitochondrial dysfunction in the HLEC cataract model.

Conclusions

Our results demonstrate that miR-204-5p maintains mitochondrial functional integrity through repressing IGFBP5, and reveal IGFBP5 may be a new therapeutic target and prognostic factor for DC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

References

  1. Alam S, Hasan MK, Neaz S, Hussain N, Rahman T (2021) Diabetes mellitus: insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology 2:36–50. https://doi.org/10.3390/diabetology2020004

    Article  Google Scholar 

  2. Kiziltoprak H, Tekin K, Inanc M, Goker YS (2019) Cataract in diabetes mellitus. World J Diabetes 10:140–153. https://doi.org/10.4239/wjd.v10.i3.140

    Article  PubMed  PubMed Central  Google Scholar 

  3. Klein BE, Klein R, Moss SE (1985) Prevalence of cataracts in a population-based study of persons with diabetes mellitus. Ophthalmology 92(9):1191–1196. https://doi.org/10.1016/s0161-6420(85)33877-0

    Article  CAS  PubMed  Google Scholar 

  4. Klein BE, Klein R, Moss SE (1995) Incidence of cataract surgery in the Wisconsin epidemiologic study of Diabetic Retinopathy. Am J Ophthalmol 119(3):295–300. https://doi.org/10.1016/s0002-9394(14)71170-5

    Article  CAS  PubMed  Google Scholar 

  5. Swarup A, Bell BA, Du J, Han JYS, Soto J, Abel ED, Bravo-Nuevo A, FitzGerald PG, Peachey NS, Philp NJ (2018) Deletion of GLUT1 in mouse lens epithelium leads to cataract formation. Exp Eye Res 172:45–53. https://doi.org/10.1016/j.exer.2018.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu Z, Huang S, Zheng Y, Zhou T, Hu L, **ong L, Li DW, Liu Y (2023) The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 92:101112. https://doi.org/10.1016/j.preteyeres.2022.101112

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Gong Q, Yang L, Liu M, Niu L, Wang L (2020) microRNA-199a-5p regulates epithelial-to-mesenchymal transition in diabetic cataract by targeting SP1 gene. Mol Med (Cambridge Mass) 26(1):122. https://doi.org/10.1186/s10020-020-00250-7

    Article  CAS  Google Scholar 

  8. Ye W, Ma J, Wang F, Wu T, He M, Li J, Pei R, Zhang L, Wang Y, Zhou J (2020) LncRNA MALAT1 Regulates miR-144-3p to Facilitate Epithelial-Mesenchymal Transition of Lens Epithelial Cells via the ROS/NRF2/Notch1/Snail Pathway. Oxidative medicine and cellular longevity, 2020, 8184314. https://doi.org/10.1155/2020/8184314

  9. Kubota M, Shui YB, Liu M, Bai F, Huang AJ, Ma N, Beebe DC, Siegfried CJ (2016) Mitochondrial oxygen metabolism in primary human lens epithelial cells: Association with age, diabetes and glaucoma. Free Radic Biol Med 97:513–519. https://doi.org/10.1016/j.freeradbiomed.2016.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Bai S, Zhang R, **a L, Chen L, Guo J, Dai F, Du J, Shen B (2021) Orai3 exacerbates apoptosis of lens epithelial cells by disrupting Ca2+ homeostasis in diabetic cataract. Clin Translational Med 11(3):e327. https://doi.org/10.1002/ctm2.327

    Article  CAS  Google Scholar 

  11. Zhang L, Lu Q, Chang C (2020) Epigenetics in Health and Disease. Adv Exp Med Biol 1253:3–55. https://doi.org/10.1007/978-981-15-3449-2_1

    Article  CAS  PubMed  Google Scholar 

  12. Huang J, Zhao L, Fan Y, Liao L, Ma PX, **ao G, Chen D (2019) The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression. Nat Commun 10(1):2876. https://doi.org/10.1038/s41467-019-10753-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang D, Shin J, Cho Y, Kim HS, Gu YR, Kim H, You KT, Chang MJ, Chang CB, Kang SB, Kim JS, Kim VN, Kim JH (2019) Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development. Sci Transl Med 11(486):eaar6659. https://doi.org/10.1126/scitranslmed.aar6659

    Article  CAS  PubMed  Google Scholar 

  14. Galasso M, Morrison C, Minotti L, Corrà F, Zerbinati C, Agnoletto C, Baldassari F, Fassan M, Bartolazzi A, Vecchione A, Nuovo GJ, Di Leva G, D’Atri S, Alvino E, Previati M, Nickoloff BJ, Croce CM, Volinia S (2018) Loss of miR-204 expression is a key event in melanoma. Mol Cancer 17(1):71. https://doi.org/10.1186/s12943-018-0819-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu J, Liu Y, Wang F, Liang M (2021) miR-204: Molecular Regulation and Role in Cardiovascular and Renal diseases. Hypertens (Dallas Tex : 1979) 78(2):270–281. https://doi.org/10.1161/HYPERTENSIONAHA.121.14536

    Article  CAS  Google Scholar 

  16. Liu, X., Guo, J. W., Lin, X. C., Tuo, Y. H., Peng, W. L., He, S. Y., Li, Z. Q., Ye,Y. C., Yu, J., Zhang, F. R., Ma, M. M., Shang, J. Y., Lv, X. F., Zhou, A. D., Ouyang,Y., Wang, C., Pang, R. P., Sun, J. X., Ou, J. S., Zhou, J. G., … Liang, S. J. (2021).Macrophage NFATc3 prevents foam cell formation and atherosclerosis: evidence and mechanisms.European heart journal, 42(47), 4847–4861. https://doi.org/10.1093/eurheartj/ehab660

  17. Conte I, Carrella S, Avellino R, Karali M, Marco-Ferreres R, Bovolenta P, Banfi S (2010) miR-204 is required for lens and retinal development via Meis2 targeting. Proc Natl Acad Sci USA 107(35):15491–15496. https://doi.org/10.1073/pnas.0914785107

    Article  PubMed  PubMed Central  Google Scholar 

  18. Conte I, Hadfield KD, Barbato S, Carrella S, Pizzo M, Bhat RS, Carissimo A, Karali M, Porter LF, Urquhart J, Hateley S, O’Sullivan J, Manson FD, Neuhauss SC, Banfi S, Black GC (2015) MiR-204 is responsible for inherited retinal dystrophy associated with ocular coloboma. Proc Natl Acad Sci USA 112(25):E3236–E3245. https://doi.org/10.1073/pnas.1401464112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou T, He C, Lai P, Yang Z, Liu Y, Xu H, Lin X, Ni B, Ju R, Yi W, Liang L, Pei D, Egwuagu CE, Liu X (2022) Mir-204-containing exosomes ameliorate GVHD-associated dry eye disease. Sci Adv 8(2):eabj9617. https://doi.org/10.1126/sciadv.abj9617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang L, Cheng R, Huang Y (2017) MiR-30a inhibits BECN1-mediated autophagy in diabetic cataract. Oncotarget 8(44):77360–77368. https://doi.org/10.18632/oncotarget.20483

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ding H, Wu T (2018) Insulin-like growth factor binding proteins in Autoimmune diseases. Front Endocrinol 9:499. https://doi.org/10.3389/fendo.2018.00499

    Article  Google Scholar 

  22. Samuel W, Kutty RK, Vijayasarathy C, Pascual I, Duncan T, Redmond TM (2010) Decreased expression of insulin-like growth factor binding protein-5 during N-(4-hydroxyphenyl)retinamide-induced neuronal differentiation of ARPE-19 human retinal pigment epithelial cells: regulation by CCAAT/enhancer-binding protein. J Cell Physiol 224(3):827–836. https://doi.org/10.1002/jcp.22191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu H, Li R, Guan L, Jiang T (2018) Knockdown of lncRNA UCA1 inhibits proliferation and invasion of papillary thyroid carcinoma through regulating miR-204/IGFBP5 axis. OncoTargets Therapy 11:7197–7204. https://doi.org/10.2147/OTT.S175467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma T, Chen T, Li P, Ye Z, Zhai W, Jia L, Chen W, Sun A, Huang Y, Wei S, Li Z (2016) Heme oxygenase-1 (HO-1) protects human lens epithelial cells (SRA01/04) against hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis. Exp Eye Res 146:318–329. https://doi.org/10.1016/j.exer.2016.02.013

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Qu M, Li J, Danielson P, Yang L, Zhou Q (2019) Induction of Fibroblast Senescence during mouse corneal wound Healing. Investig Ophthalmol Vis Sci 60(10):3669–3679. https://doi.org/10.1167/iovs.19-26983

    Article  CAS  Google Scholar 

  26. Sun Y, Zhou Y, Shi Y, Zhang Y, Liu K, Liang R, Sun P, Chang X, Tang W, Zhang Y, Li J, Wang S, Zhu Y, Han X (2021) Expression of miRNA-29 in pancreatic β cells promotes inflammation and diabetes via TRAF3. Cell Rep 34(1):108576. https://doi.org/10.1016/j.celrep.2020.108576

    Article  CAS  PubMed  Google Scholar 

  27. Babizhayev MA (2011) Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease. Cell Biochem Funct 29(3):183–206. https://doi.org/10.1002/cbf.173

    Article  CAS  PubMed  Google Scholar 

  28. Nagai N, Mano Y, Otake H, Shibata T, Kubo E, Sasaki H (2019) Changes in mitochondrial cytochrome c oxidase mRNA levels with cataract severity in lens epithelia of Japanese patients. Mol Med Rep 19(6):5464–5472. https://doi.org/10.3892/mmr.2019.10214

    Article  CAS  PubMed  Google Scholar 

  29. Yang T, Lin X, Li H, Zhou X, Fan F, Yang J, Luo Y, Liu X (2022) Acetyl-11-keto-beta Boswellic Acid (AKBA) protects Lens epithelial cells against H2O2-Induced oxidative Injury and attenuates cataract progression by activating Keap1/Nrf2/HO-1 signaling. Front Pharmacol 13:927871. https://doi.org/10.3389/fphar.2022.927871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Liu S, Zhang F, Jiang P, Wu X, Liang Y (2015) Expression of the microRNAs hsa-miR-15a and hsa-mir-16-1 in lens epithelial cells of patients with age-related cataract. Int J Clin Exp Med 8(2):2405–2410

    PubMed  PubMed Central  Google Scholar 

  31. Gao J, Wang Y, Zhao X, Chen P, **e L (2015) MicroRNA-204-5p-Mediated regulation of SIRT1 contributes to the Delay of Epithelial Cell Cycle Traversal in Diabetic corneas. Investig Ophthalmol Vis Sci 56(3):1493–1504. https://doi.org/10.1167/iovs.14-15913

    Article  CAS  Google Scholar 

  32. Fan C, Liu X, Li W, Wang H, Teng Y, Ren J, Huang Y (2019) Circular RNA circ KMT2E is up-regulated in diabetic cataract lenses and is associated with mir-204-5p sponge function. Gene 710:170–177. https://doi.org/10.1016/j.gene.2019.05.054

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Li W, Zang X, Chen N, Liu T, Tsonis PA, Huang Y (2013) MicroRNA-204-5p regulates epithelial-to-mesenchymal transition during human posterior capsule opacification by targeting SMAD4. Investig Ophthalmol Vis Sci 54(1):323–332. https://doi.org/10.1167/iovs.12-10904

    Article  CAS  Google Scholar 

  34. Zhang L, Fang Y, Zhao X, Zheng Y, Ma Y, Li S, Huang Z, Li L (2021) miR-204 silencing reduces mitochondrial autophagy and ROS production in a murine AD model via the TRPML1-activated STAT3 pathway. Mol Therapy Nucleic Acids 24:822–831. https://doi.org/10.1016/j.omtn.2021.02.010

    Article  CAS  Google Scholar 

  35. Houzelle A, Dahlmans D, Nascimento EBM, Schaart G, Jörgensen JA, Moonen-Kornips E, Kersten S, Wang X, Hoeks J (2020) MicroRNA-204-5p modulates mitochondrial biogenesis in C2C12 myotubes and associates with oxidative capacity in humans. J Cell Physiol 235(12):9851–9863. https://doi.org/10.1002/jcp.29797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qiao D, Xu J, Le C, Huang E, Liu C, Qiu P, Lin Z, **e WB, Wang H (2014) Insulin-like growth factor binding protein 5 (IGFBP5) mediates methamphetamine-induced dopaminergic neuron apoptosis. Toxicol Lett 230(3):444–453. https://doi.org/10.1016/j.toxlet.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  37. Xu X, Huang E, Luo B, Cai D, Zhao X, Luo Q, ** Y, Chen L, Wang Q, Liu C, Lin Z, **e WB, Wang H (2018) Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway. FASEB Journal: Official Publication Federation Am Soc Experimental Biology. fj201701460RRR. Advance online publication https://doi.org/10.1096/fj.201701460RRR

    Article  Google Scholar 

  38. Akkiprik M, Hu L, Sahin A, Hao X, Zhang W (2009) The subcellular localization of IGFBP5 affects its cell growth and migration functions in breast cancer. BMC Cancer 9:103. https://doi.org/10.1186/1471-2407-9-103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported by Qilu Health Outstanding Young Talents Program (A0241), the National Natural Science Foundation of China (82000851, 81970782), and the Natural Science Foundation of Shandong Province (ZR2020QH144).

Author information

Authors and Affiliations

Authors

Contributions

J. X., P. C. conducted experiments, S. M. collected human anterior lens capsule samples, X. Z., W.L. and R. C. analyzed most of the data and prepared the figures, J. X. and X. W. wrote and modified the manuscript, Y. D. and X. W. supervised the research.

Corresponding authors

Correspondence to **aolei Wang or Yunhai Dai.

Ethics declarations

Ethical declaration

This study was approved by the Ethical Committee of Qingdao Eye Hospital affiliated with Shandong First Medical University (No:5-2021-008), and conducted in accordance with the provisions of the Declaration of Helsinki. The human materials were obtained with the consent of the participants and all participants signed consent prior to participation.

Conflict of interest

No potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, J., Chen, P., Mao, S. et al. Mir-204-5p alleviates mitochondrial dysfunction by targeting IGFBP5 in diabetic cataract. Mol Biol Rep 51, 755 (2024). https://doi.org/10.1007/s11033-024-09701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09701-4

Keywords

Navigation